julio cortazar 62 modelo para armar
Licenciada en Matemáticas
Carolina Moreno
Colegio el Carmelo Bogotá
07/de Junio/ 2012
El Numero π
Es de los números irracional y una delas constantes matemáticas más importantes. Se utiliza frecuentemente en matemáticas, física e ingeniería. El valor numérico de π, es el siguiente:
π ≈ 3,14159265358979323846...
El valor de π se haobtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física.
El valor aproximado de π en las antiguasculturas se remonta a la época del escriba egipcio Ahmes en el año 1800 a. C., descrito en el papiro Rhind, donde se emplea un valor aproximado de π afirmando que: el área de un círculo es similar a la de uncuadrado, cuyo lado es igual al diámetro del círculo disminuido en 1/9, es decir, igual a 8/9 del diámetro. En notación moderna:
Euclides fue el primero en demostrar que la relaciónentre una circunferencia y su diámetro es una cantidad constante.15 No obstante, existen diversas definiciones del número , pero las más común es:
es la relación entre la longitud deuna circunferencia y su diámetro.
Por tanto, también es:
El área de un círculo unitario (de radio unidad del plano euclídeo).
El menor número real positivo tal que .
También es posible definir analíticamente ; dosdefiniciones son posibles:
La ecuación sobre los números complejos admite una infinidad de soluciones reales positivas, la más pequeña de las cuales es precisamente .
La ecuación diferencial conlas condiciones de contorno para la que existe solución única, garantizada por el teorema de Picard-Lindelöf, es un función analítica cuya raíz positiva más pequeña es precisamente.
En lasiguiente tabla se muestra algunas aproximaciones históricas de valores de π, anteriores a la época
Año
Matemático o documento
Cultura
Aproximación
Error
(en partes por millón)
~1900 a. C....
Regístrate para leer el documento completo.