Límites
Definición rigurosaInformalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:
si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tanpróximo a L como se desee. Formalmente, utilizando términos lógico-matemáticos:
Esta definición se denomina frecuentemente definición épsilon-delta de límite, y se lee como:
"El límite de f de xcuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distanciaentre la imagen de x y L es menor que ε unidades".
Cálculo del límite en un punto
Si f(x) es una función usual (polinómicas, racionales, radicales, exponenciales, logarítmicas, etc.) y está definidaen el punto a, entonces se suele cumplir que:
Es decir: para calcular el límite se sustituye en la función el valor al que tienden las x.
No podemos calcular porque el dominio de definiciónestá en el intervalo [0, ∞), por tanto no puede tomar valores que se acerquen a -2.
Sin embargo si podemos calcular , aunque 3 no pertenezca al dominio, D= − {2, 3}, si podemos tomar valores del dominiotan próximos a 3 como queramos.
Cálculo del límite en una función definida a trozos
En primer lugar tenemos que estudiar los límites laterales en los puntos de unión de los diferentes trozos.
Sicoinciden, este es el valor del límite.
Si no coinciden, el límite no existe.
.
En x = −1, los límites laterales son:
Por la izquierda:
Por la derecha:
Como en ambos casos coinciden, existe...
Regístrate para leer el documento completo.