LibroOLCOMA Nota: No soy el autor, pero pretendo ayudar a los interesados.
Problemas de preparaci´on para las olimpiadas
costarricenses de matem´atica
Recopilaci´on y edici´on:
Comisi´on de Olimpiadas
Costarricenses de Matem´aticas
–OLCOMA–
EUNED
EDITORIAL UNIVERSIDAD ESTATAL A DISTANCIA
2
Presentaci´on
El proyecto olimpiadas es una actividad acad´emica que intenta realizar un aporte en la
creaci´on de medios que permitan haceratractivo el estudio de las matem´aticas y despertar en
los j´ovenes no s´olo el esp´ıritu de investigaci´on sino una sana competitividad. Su prop´osito
es permitir a los estudiantes de secundaria desarrollar el inter´es y habilidades por esta
disciplina, as´ı como proporcionar a los docentes un recurso m´as que fortalezca su quehacer
acad´emico.
El banco de problemas que aparece en este folletoconstituye una recopilaci´on de ejercicios de olimpiadas anteriores, realizadas tanto en nuestro pa´ıs como en otros pa´ıses donde
se llevan a cabo este tipo de cert´amenes as´ı como una colecci´on de nuevos problemas
aportados por profesionales en el campo.
El prop´osito de estos ejercicios es que sirvan de base para la preparaci´on de los estudiantes que participan en las distintas eliminatorias, delos diferentes niveles, de las
Olimpiadas Costarricenses de Matem´atica. Esperamos que tanto los estudiantes como los
profesores que los preparan obtengan el m´aximo provecho del material.
En la primera parte de este trabajo se propone una lista de ejercicios; son m´as de cien
ejercicios para cada uno de los tres niveles A, B y C en que se divide la competencia.
Estos ejercicios est´an propuestosen las modalidades de selecci´on y desarrollo. Debemos
recordar que las eliminatorias de la Olimpiada Nacional contemplan estas dos modalidades:
la primera est´a constituida solamente por ejercicios de selecci´on, la segunda tiene parte de
selecci´on y parte de desarrollo, la tercera (final) est´a conformada u´nicamente por problemas
de desarrollo. Estos ejercicios que aqu´ı se proponen tienendiferentes grados de dificultad
con el prop´osito de que sirvan de entrenamiento para las tres eliminatorias. Debemos agregar
que la clasificaci´on de los ejercicios por niveles est´a hecha tomando en cuenta la tem´atica de
la que tratan y la dificultad de los mismos; sin embargo, esto no excluye que los estudiantes
puedan resolver, tambi´en, muchos de los ejercicios que corresponden a nivelesdiferentes del
suyo.
En la segunda parte del material se proporcionan las seis pruebas de la Olimpiada
Nacional del a˜no 2000; las tres eliminatorias de los dos ciclos en que se dividi´o esta competencia. Esta es otra buena cantidad adicional de problemas que puede ayudar en el
entrenamiento.
Se incluye un esquema de soluci´on a los ejercicios planteados, tanto de los problemas
propuestos en la primeraparte como de los problemas de las seis pruebas de la Olimpiada
del a˜no 2000. Cabe destacar que las soluciones oficiales que se presentan no son los u´nicos
3
4
caminos para llegar a la respuesta. Conociendo el inter´es de los estudiantes participantes
en estos eventos acad´emicos competitivos y sabiendo la capacidad de estos j´ovenes, estamos
seguros de que los mismos podr´an obtener otrassoluciones interesantes a los problemas
planteados. Como notar´a el lector, los problemas que aqu´ı aparecen no son ejercicios rutinarios a los que se les aplica directamente los conocimientos que se adquieren en secundaria,
m´as bien requieren de una buena dosis de ingenio para ser resueltos. Como en todos los
aspectos del aprendizaje de las matem´aticas, el esfuerzo individual y el enfrentamientosolitario con los problemas son importantes, pero tambi´en es muy importante la discusi´on con
los compa˜neros y los profesores.
Hemos agregado tambi´en un peque˜no resumen que contiene algunos conceptos y resultados que pueden ser u´tiles en la resoluci´on de este tipo de ejercicios. Algunos de estos
conceptos no son necesariamente parte de los programas de matem´aticas de la ense˜nanza
media,...
Regístrate para leer el documento completo.