Limites Y Funcines
Presentado al profesor
CARLOS LOPEZ
Estudiante:
ALEXANDER REALPE RUBIO
UNIVERSIDAD DEL AREA ANDINA
LA CRUZ – NARIÑO
MAYO 2012
PROPIEDADES DE LOS LÍMITES
El límite de una función en un punto es único. (Se puede decir lo mismo diciendo: Una función no puede tener dos límites diferentes en un mismo punto).
Sean f y g dos funciones. Si el límite de lafunción f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m, entonces el limite de la función f + g, en el punto x = a, es l + m. (Esto se expresa de manera rápida diciendo: El límite de la suma es igual a la suma de los límites).
lim (f(x) + g(x)) = lim f(x) + lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de lafunción g, en el punto x = a, es m, entonces el limite de la función f * g, en el punto x = a, es l * m. (Esto se expresa de manera rápida diciendo: El límite del producto es igual al producto de los límites).
lim (f(x).g(x)) = lim f(x) . lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m (distinto de cero),entonces el limite de la función f / g, en el punto x = a, es l / m. (Esto se expresa de manera rápida diciendo: El límite del cociente es igual al cociente de los límites).
lim (f(x)/g(x)) = lim f(x) / lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m, entonces el limite de la función f g , en el puntox = a, es l m.
lim (f(x))g(x) = lim (f(x))lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m, entonces el limite de la función f(g(x)) (suponiendo que tenga sentido) en el punto x = a, es l.
Límites y Continuidad
Límite de una función en un punto. Propiedades.
Límites en el infinito. Asíntotas deuna curva.
Cálculo de límites.
Función continua en un punto y en un intervalo.
Operaciones con funciones continuas.
Discontinuidades.
El Teorema del valor medio de Bolzano y el teorema de existencia de extremos absolutos de Weierstrass.
Objetivos Mínimos
Conocer los conceptos de límite de una función en un punto (tanto finito como infinito) y de límite en el ±. Saber calcular límitesde cocientes de polinomios. Saber determinar las asíntotas verticales, horizontales y oblicuas de una función. Conocer el concepto de límite lateral y su relación con el de límite. Conocer las propiedades algebraicas del cálculo de límites, los tipos principales de indeterminación que pueden darse y las técnicas para resolverlas. Conocer el concepto de continuidad de una función en un punto,incluida la continuidad lateral, y, como consecuencias elementales, la conservación del signo y la acotación de la función en un entorno del punto. Saber donde son continuas las funciones elementales. Conocer los distintos comportamientos de discontinuidad que pueden aparecer y saber reconocerlos usando los límites laterales. Saber determinar la continuidad de las funciones definidas a trozos. Conocerel concepto de continuidad de una función en un intervalo y qué significa eso en los extremos del intervalo. Conocer el teorema del valor intermedio de Bolzano y su aplicación a la localización de ceros de una función y al dibujo de gráficas de funciones que se cortan. Conocer el teorema de existencia de extremos absolutos de Weierstrass y, como consecuencia, que toda función continua en unintervalo cerrado y acotado está acotada y alcanza sus extremos.
1. Límite de una función en un punto. Propiedades. A) LIMITE EN UN PUNTO.
A1) Límite finito: Se dice que la función y = f(x) tiene por límite l cuando x tiende hacia a, y se representa por (Es decir, que si fijamos un entorno de l de radio , podemos encontrar un entorno de a de radio , que depende de , de modo que para cualquier...
Regístrate para leer el documento completo.