Limites
aprovechamiento de los mismos, es decir, obtener mejor calidad con la misma cantidad de dinero. Para lograr este objetivo debemos recurrir al control estadístico de calidad, como una de las armas más poderosas para la realización de todas estas ideas. El objetivo es dar una buena información de la herramientas existentes para el control estadístico de lacalidad, pero debemos dejar bien claro que los objetivos de calidad no se logran esgrimiendo solamente estas herramientas estadísticas. Hoy en día, el concepto de Control Total de Calidad, enseña claramente que todos los estamentos de la empresa están involucrados en la obtención de la mejor calidad del producto, y que éste objetivo no es, de ninguna manera, responsabilidad exclusiva de losdepartamentos técnicos especializados en el control estadístico de la calidad, sino de todos los integrantes de la empresa, desde el más humilde empleado, al más importante de los gerentes. 1.2 Definición de la calidad
Definiremos dos aspectos de la calidad, la Calidad del Diseño y la Calidad del Producto. Entendemos por Calidad del Diseño al grado de concordancia entre el diseño y el fin para elcual fue creado, y por Calidad del Producto, al grado de conformidad entre el producto y su diseño. Los conceptos y métodos que veremos son aplicables al control de calidad del producto, y son, en general, métodos universales, es decir que valen para cualquier producto, ya sean cremas dentales, bebidas gaseosas, tractores, medicamentos o ampolletas. Un buen nivel de calidad implica un diseñocorrecto y un producto de acuerdo con su diseño. Definición de limite En matemática, el límite es un concepto que describe la tendencia de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor. En cálculo (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergencia, continuidad,derivación, integración, entre otros. El concepto se puede generalizar a otros espacios topológicos, como pueden ser las redes topológicas; de la misma manera, es definido y utilizado en otras ramas de la matemática, como puede ser la teoría de categorías. Para fórmulas, el límite se utiliza usualmente de forma abreviada mediante lim como en lim(an) = a o se representa mediante la flecha (→) comoen an → a. Límite de una función Visualización de los parámetros utilizados en la definición de límite. En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de lafunción. Esto se
puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos. Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe: si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee. Para un mayor rigor matemático se utiliza la...
Regístrate para leer el documento completo.