Logicas
2013, Bogotá, Colombia
Lógicas de primer y segundo orden
Alonso Zela
Facultad de Filosofía y Letras
Universidad de Buenos Aires
Buenos Aires — Argentina
alonso.zela@filo.uba.ar
Resumen
En el presente trabajo me propongo retomar un debate interesante dentro de la literatura
de la lógica filosófica, a saber, la querella lógica de primer orden vs. lógica de segundo
orden.Expondré esta ‘rivalidad’ desde una nueva perspectiva que tiene como requisito
entender la lógica qua ciencia en sentido kuhniano. Si bien mi enfoque no pretende
tomar estas lógicas como en disputa, me inclinaré a favor de una de las lógicas, luego de
presentar un resultado metafilosófico que considero pone en un puesto muy superior a
una de la lógicas en relación con la otra.
Abstract
In thistext I will approach to an interesting debate within the philosophy of logic, to
wit, the dispute first-order logic versus second-order logic. I will expose this rivalry
from a perspective that demands understanding logic as a science in the sense Kuhn
uses this term. Even though my approach may understand this logics as if in a dispute, I
will lean to one of this, after presenting ameta-philosophical result which puts a kind of
logic way above the other
1
CUADRANTEPHI No. 26-27
2013, Bogotá, Colombia
1. Un poco de historia
En el campo de las disciplinas científicas, cuando se habla de lógica (filosófica o
matemática), esto es, de un lenguaje artificial “perfecto”, está establecido, por
circunstancias históricas, que nos refiramos siempre a la lógica de primer orden o
cálculo depredicados. Esta lógica nació luego de ser la vencedora de un conflicto
histórico sucedido en los albores de la primera mitad del siglo XX. Su victoria le
permitió asegurarse el derecho a aislarse como sistema digno de ser estudiado
independientemente gracias al descubrimiento de ciertas pro- piedades
metateóricas interesantes que poseía y de las cuales su predecesora y rival carecía.
1.Un poco dehistoria
En el campo de las disciplinas científicas, cuando se habla de lógica (filosó- fica o
matemática), esto es, de un lenguaje artificial “perfecto”, está establecido, por
circunstancias históricas, que nos refiramos siempre a la lógica de primer orden o
cálculo de predicados. Esta lógica nació luego de ser la vencedora de un conflicto
histórico sucedido en los albores de la primera mitad del sigloXX. Su victoria le
permitió asegurarse el derecho a aislarse como sistema digno de ser estudiado
independientemente gracias al descubrimiento de ciertas pro- piedades
metateóricas interesantes que poseía y de las cuales su predecesora y
rival carecía.2
2.
LPO
La lógica de primer orden (LPO), o también conocida hoy como «lógica
estándar», puede decirse, con cierta precaución, que comienza osurge cuan- do
generalizamos proposiciones, es decir, desde un punto de vista gramatical,
cuando anteponemos adjetivos a sustantivos comunes (o de primer orden).
Tómese el caso de: «Todos los números son pares o impares».3 Logica- y estructuralmente hablando, el paso anterior se conoce como la introducción o
generalización de cuantificadores4 . Este paso por trivial que pueda aparentar trae
consigouna de las características más importantes de los lenguajes de pri- mer
2
CUADRANTEPHI No. 26-27
2013, Bogotá, Colombia
orden, a saber, el incremento en poder expresivo con respecto a lenguajes de orden
menor a 1, esto es, lenguajes proposicionales o cálculos conectivos. Esto significa
que, por ejemplo, la proposición de primer orden «Todos los números son pares o
impares» implica todas susinstancias, es decir, «Uno es par», «Dos es par», «Tres
es par», . . . etc., sin embargo, es un hecho interesante que la in- versa no se
cumpla, o sea, que las infinitas oraciones no sean equivalentes a la proposición de
primer orden5 .
La idea lógica detrás de este fenómeno es que una oración cuantificada en primer
orden no es equivalente al conjunto de todas sus instancias, o, dicho de otra...
Regístrate para leer el documento completo.