Los Conjuntos
En matemáticas, un conjunto es una agrupación de objetos considerada como un objeto en sí. Los objetos del conjunto pueden ser cualquier cosa:personas, números, colores, letras, figuras, etc. Cada uno de los objetos en la colección es un elemento o miembro del conjunto.1 Por ejemplo, el conjunto de los colores del arcoíris es:
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil,Violeta}
Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo, para los números naturales, si se considera la propiedad de ser un número primo, el conjunto de los números primos es:
P = {2, 3, 5, 7, 11, 13, ...}
Un conjunto queda definido únicamente por sus miembros y por nada más. En particular, un conjunto puede escribirse como una lista de elementos,pero cambiar el orden de dicha lista o añadir elementos repetidos no define un conjunto nuevo. Por ejemplo:
S = {Lunes, Martes, Miércoles, Jueves, Viernes} = {Martes, Viernes, Jueves, Lunes, Miércoles}
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta} = {Amarillo, Naranja, Rojo, Verde, Violeta, Añil, Azul}
Los conjuntos pueden ser finitos o infinitos. El conjunto de los números naturaleses infinito, pero el conjunto de losplanetas en el Sistema Solar es finito (tiene ocho elementos). Además, los conjuntos pueden combinarse medianteoperaciones, de manera similar a las operaciones con números.
Los conjuntos son un concepto primitivo, en el sentido de que no es posible definirlos en términos de nociones más elementales, por lo que su estudio puede realizarse de manera informal,apelando a la intuición y a la lógica. Por otro lado, son el concepto fundamental de la matemática: mediante ellos puede formularse el resto de objetos matemáticos, como los números y las funciones, entre otros. Su estudio detallado requiere pues la introducción de axiomas y conduce a la teoría de conjuntos.
El concepto de conjunto como objeto abstracto no comenzó a emplearse en matemáticas hastael siglo XIX, a medida que se despejaban las dudas sobre la noción de infinito.2 Los trabajos de Bernard Bolzano y Bernhard Riemann ya contenían ideas relacionadas con una visión conjuntista de la matemática. Las contribuciones de Richard Dedekind al álgebra estaban formuladas en términos claramente conjuntistas, que aún prevalecen en la matemática moderna: relaciones deequivalencia, particiones, homomorfismos, etc., y él mismo explicitó las hipótesis y operaciones relativas a conjuntos que necesitó en su trabajo.
La teoría de conjuntos como disciplina independiente se atribuye usualmente a Georg Cantor. Comenzando con sus investigaciones sobre conjuntos numéricos, desarrolló un estudio sobre los conjuntos infinitos y sus propiedades. La influencia de Dedekind y Cantor empezó a serdeterminante a finales del siglo XIX, en el proceso de «axiomatización» de la matemática, en el que todos los objetos matemáticos, como los números, las funciones y las diversas estructuras, fueron construidos con base en los conjuntos.
Un conjunto es una colección bien definida de objetos, entendiendo que dichos objetos pueden ser cualquier cosa: números, personas, letras, otros conjuntos, etc.Algunos ejemplos son:
A es el conjunto de los números naturales menores que 5.
B es el conjunto de los colores verde, blanco y rojo.
C es el conjunto de las letras a, e, i, o y u.
D es el conjunto de los palos de la baraja francesa.
Los conjuntos se denotan habitualmente por letras mayúsculas. Los objetos que componen el conjunto se llaman elementos o miembros. Se dice que «pertenecen» alconjunto y se denota mediante el símbolo ∈:n 1 la expresión a ∈ A se lee entonces como «a está en A», «a pertenece a A», «A contiene a a», etc. Para la noción contraria se usa el símbolo ∉.
Existen varias maneras de referirse a un conjunto. En el ejemplo anterior, para los conjuntos A y D se usa una definición intensiva o por comprensión, donde se especifica una propiedad que todos sus elementos...
Regístrate para leer el documento completo.