Masa resorte
(20 puntos)
Sistema masa-resorte. Dependencia con el número de espiras.
La constante elástica de un resorte helicoidal, k, depende del número de espiras, n, que tiene.Como hipótesis, supondremos que esta dependencia es del tipo: k = k1 n p , donde p es una constante y k1 es la constante elástica de una sola espira. Por otra parte, si se suspende del resorte una masaM y se pone a oscilar verticalmente, el periodo de esta oscilación es: T = 2π M +α m , k (2) (1)
donde m es la masa de la parte del resorte seleccionada para el estudio de la oscilación y α es unaconstante positiva menor que la unidad. En esta prueba experimental deberá realizar una serie de medidas para diferentes números de espiras de un resorte, comprobar la dependencia (1) y determinar losvalores de k1, p, M y α. Dispone del siguiente material: * Un resorte con 13,8 espiras por centímetro cuando están juntas (muelle horizontal). La masa de cada espira es 1,656·10-4 kg. * Un soportevertical graduado en cuyo extremo superior hay una escuadra metálica para suspender la porción de resorte deseada. * Una bola de plomo de masa M desconocida y una tuerca de hierro cuya masa M' seindica, en gramos, en uno de sus laterales. * Un cronómetro digital y una regla de plástico. 1) Realice las medidas necesarias para completar la Tabla I adjunta: a) Con el resorte en horizontal, seleccioneuna longitud Lo (20, 18,....6 cm) y sitúelo en el soporte. b) Cuelgue la masa M y anote la lectura L del índice inferior del resorte. c) Añada la tuerca M', tome la nueva lectura L' del índice y anoteen la Tabla I el incremento de longitud ∆L = L’-L. d) Quitando la tuerca, es decir, sólo con la bola suspendida del resorte, mida el periodo de oscilación, T, del sistema. Emplee las columnas de laTabla II para tabular los valores derivados de los anteriores que necesite para cálculos y gráficas posteriores. 2) Determine, para cada longitud Lo, la constante k del resorte. 3) Compruebe que la...
Regístrate para leer el documento completo.