MASTER Fisica

Páginas: 2 (295 palabras) Publicado: 10 de enero de 2015
Problema 1:
El espectro visible corresponde a radiaciones de longitud de onda comprendida entre 450 y 700nm.
a) Calcule la energía correspondiente a la radiación visible de mayorfrecuencia.

E = hυ = hc/λ =
= 6,62 ⋅ 10-34 J s ⋅ 3 ⋅ 108 m s-1/450 ⋅ 10-9 m =
= 4,42 ⋅ 10-19 J

b) Razone si es o no posible conseguir la ionización del átomo de litio condicha radiación.

E = 4,42 ⋅ 10-19 J/1,6 ⋅ 10-19 J eV-1 = 2,76 eV; como esta energía es menor que la de ionización (5,40 eV), no es posible producir esa ionización.

c) Cuál es laenergía mínima necesaria en eV para ionizar este átomo. A que parte del espectro pertenece?

5,4 eV (pregunta equivocada, lo que se quería era la longitud de onda correspondiente)DATOS: Carga del electrón = 1,6x10-19 C; velocidad de la luz (c) = 3,0x108 m•s-1;
Constante de Planck (h) = 6,63x10-34 J•s; primera energía de ionización del litio= 5,40 eV.


a) La frecuencia y la longitud de onda son valores inversamente proporcionales, por tanto, tendremos que calcular la energía correspondiente a la menor longitud deonda (λ = 450 nm)
C 3,0 x 108 m•s-1
E = h • = 6,63 x 10-34 J•s •= 4,42 x 10-19 J
Λ 450 x 10-9 m
b) Será posible si esta energía es superior a la energía de la1ª ionización (E. umbral). Esta energía de ionización la dan en electronvoltios por tanto será necesario pasarla a Julios para poder comparar.
5,40 eV = 5,40 x 1,6 x 10-19 C x 1vol. = 8,64 x 10-19 J
Como 4,42 x 10-19 J < 8,64 x 10-19 J, no se puede conseguir la ionización, es decir, no se
da el efecto fotoeléctrico.
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Master en Ciencias Fisicas
  • Master
  • Master
  • Master
  • Master
  • Master
  • master
  • master

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS