Matematicas
Section 2.1 Section 2.2 Section 2.3 Section 2.4 Section 2.5 Section 2.6 The Derivative and the Tangent Line Problem . . . 53 Basic Differentiation Rules and Rates of Change . 60 The Product and Quotient Rules and Higher-Order Derivatives . . . . . . . . . . . . . . 67 The Chain Rule . . . . . . . . . . . . . . . . . . . 73 Implicit Differentiation . . . . . . . .. . . . . . . 79 Related Rates . . . . . . . . . . . . . . . . . . . . 85 . . . . . . . . . . . . . . . . . . . . . . . . . 92
Review Exercises
Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . 98
C H A P T E R Differentiation
Section 2.1
2
The Derivative and the Tangent Line Problem
Solutions to Odd-Numbered Exercises
1. (a) m (b) m
0 3
3. (a), (b)(c) y
f 4 4 3 x 3 1x
f 1 x 1 1 1 2 2
1
f 1)
y
y
6 5 4 3 2 1
f )4) 4
f )1) )x 1
1)
f )1)
x
1
f )4)
5 )4, 5)
x
f )4) f )1)
3
1
f )1) )1, 2)
2
x
1 2 3 4 5 6
5. f x
3
2x is a line. Slope
2
7. Slope at 1,
3
lim lim
g1 1 1 x
x→0
x x
2
g1 4 x x x 2
2
3 1
x→0
lim
2 x 2 x
x→0
lim 2
x→0
9.Slope at 0, 0
lim lim
f 0 3 t
t t t t t 3
f 0
2
t→0
11. f x 0 f x
3 lim f x 3 x 0 3
x→0
t→0
x x
f x
lim 3
t→0
lim
x→0
lim 0
x→0
13. f x f x
5x lim f x 5x 5 5
x→0
15. h s x x x x f x h s 5x
3 lim
2 s 3 hs 2 s 3
s→0
s s
hs 2 s 3
lim lim
x→0
3 lim
s→0
s s
3
x→0
2 s 3 lim s→0 s
2 3
53
54
Chapter 2Differentiation
17. f x f x
2x2 lim lim
x→0
x f x 2x 2x2 4x x
1 x x x
2
f x x 2 x
2
x x
2
1 x x x
2x2 1
x
1 2x2 x 1
x→0
lim lim 19. f x f x x3
4x x 2 x x
x→0
x
x→0
lim 4x
x→0
2 x
1
4x
1
12x f x x x3 x x x
3
lim lim lim
f x 12 x x 3x x
2 2
x→0
x x x
3
x3
3
12x 12x 12 x x3 12x
x→0
3x2 x
x→0
x3x2 x 3x x 3x x 12 x 3x2 12 x x
2
lim
x→0
lim 3x2
x→0
12
21. f x f x
1 x lim
x→0
1 f x 1 x x x 1 x x x x x 1
2
f x 1 x 1
lim
x
x→0
lim lim lim
x xx xx x 1
1
x→0
x 1 x x 1 x
1 1 1
x→0
x→0
1 1 x
1
x
23. f x f x
x lim
x→0
1 f x x x x x 1 1 x x x x x x x x 1 1 1 f x 1 x 1 1 x 1 2 x x x x 1 1 1 1 1 x x x x 1 1 x x 1 1
limlim lim
x→0
x→0
x→0
x
Section 2.1
The Derivative and the Tangent Line Problem
55
25. (a) f x f x
x2 lim
x→0
1 f x x x x
2
17. (b) f x
−5
8
(2, 5)
5 −2
lim
x 2x x
x→0
1 x x
2
x2
1
lim
x→0
x x 2x
lim 2x
x→0
At 2, 5 , the slope of the tangent line is m 22 4. The equation of the tangent line is y y 5 5 y 4x 4x 4x x3 lim f xx 3x2 x
x→0
2 8 3.
27. (a) f x f x
18. (b) x x x3 x f x
−5
10
(2, 8)
5 −4
lim lim
x3
2
x→0
x→0
3x x x 3x x
x x
2
3
lim 3x2
x→0
3x2 32
2
At 2, 8 , the slope of the tangent is m The equation of the tangent line is y 8 y 29. (a) f x f x x lim lim lim f x x x x x x 1 x
x→0
12.
12 x 12x
2 16. 18. (b) x x x x x x x f x
−1
3
(1, 1)5 −1
x x x
x→0
x x
x x
x x
x→0
lim
x→0
1 2 x
At 1, 1 , the slope of the tangent line is m 1 2 1 1 . 2
The equation of the tangent line is y 1 y 1 x 2 1 x 2 1 1 . 2
56
Chapter 2
Differentiation
31. (a) f x f x
4 x lim f x
x→0
(b) x x x f x 4 x x xx x3 x x 2x 2 x
2
10
(4, 5)
− 12 12
x lim lim lim lim lim x2 x2
x→0
x x
x
4 x x4x 4 x x
−6
x→0
4x x 2 x x x x x x3 x
x→0
x x2 x x x 4 x x
x2 x
x x x2 x x→0 x x x x2 xx 4 1 x x x 4 x2 4
x→0
At 4, 5 , the slope of the tangent line is m 1 4 16 3 4
The equation of the tangent line is y y 5 3 x 4 3 x 4 2 3x2. Since the 35. Using the limit definition of derivative, f x 1 2x x .
1 2,
4
33. From Exercise 27 we know that f x slope of the given...
Regístrate para leer el documento completo.