matematicas
Definición
Una elipse es el lugar geométrico de todos los puntos de un plano para los cuales se cumple que el cociente entre sus distancias a un punto fijo (que se denomina foco–)y a una recta dada (llamada directriz) permanece constante y es igual a la excentricidad de la misma.
Ecuación de la elipse
En coordenadas cartesianas
Forma cartesiana centrada en origen
La ecuación de unaelipse en coordenadas cartesianas, con centro en el origen, es:
donde a > 0 y b > 0 son los semiejes de la elipse, donde si a corresponde al eje de las abscisas y b al eje de las ordenadas la elipse es horizontal, si es al revés, entonces es vertical. El origen O es la mitad del segmento [FF']. La distancia entre los focos FF' se llama distancia focal y vale 2c = 2ea,siendo e la excentricidad y a el semieje mayor.
Forma cartesiana centrada fuera del origen
Si el centro de la elipse se encuentra en el punto (h,k), la ecuación es:
Formas paramétricas
La ecuación paramétrica de una elipse con centro en y siendo el semieje mayor y el menor, es:
con no es el ángulo θ del sistema de coordenadas polares con origen en el centro de la elipse, sino la anomalía excéntrica de la elipse.La relación entre y θ es
.
La ecuación paramétrica de una elipse con centro en en la que el parámetro sea concordante con el ángulo polar respecto al centro desplazado es:
con . El parámetro es el ángulo de un sistema polar cuyo origen está centrado en .
Área interior de una elipse
El área de la superficie interior de una elipse es:
Siendo a y b los semiejes.
]Perímetro de unaelipse
El cálculo del perímetro de una elipse requiere del cálculo de integrales elípticas de segunda especie.
Sin embargo, el matemático Ramanujan dio una expresión sencilla que se aproxima razonablemente a la longitud de la elipse, pero en grado menor que la obtenida mediante integrales elípticas. Ramanujan, en su fórmula, utiliza el “semieje mayor” (a) y el “semieje menor” (b) de la elipse.Expresión aproximada del perímetro de una elipse:
Elementos mas importantes de la elipse
Elementos de una elipse
La elipse y algunas de sus propiedades matemáticas.
La elipse es una curva plana y cerrada, simétrica respecto a dos ejes perpendiculares entre sí:
El semieje mayor (el segmento C-a de la figura), y
el semieje menor (el segmento C-b de la figura).
Miden la mitad del eje mayor ymenor respectivamente.
Puntos de una elipse
Los focos de la elipse son dos puntos equidistantes del centro, F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor, (PF1 + PF2 = 2a).
Si F1 y F2 son dos puntos de un plano, y 2a es una constante mayor que la distancia F1F2, un punto Ppertenecerá ala elipse si se cumple la relación:
donde es la medida del semieje mayor de la elipse.
Ejes de una elipse
El eje mayor 2a, es la mayor distancia entre dos puntos adversos de la elipse. El resultado constante de la suma de las distancias de cualquier punto a los focos equivale al eje mayor. El eje menor 2b, es la menor distancia entre dos puntos adversos de la elipse. Los ejes de la elipseson perpendiculares entre si.
Excentricidad de una elipse
La excentricidad ε (épsilon) de una elipse es la razón entre su semidistancia focal (segmento que va del centro de la elipse a uno de sus focos), denominada por la letra c, y su semieje mayor. Su valor se encuentra entre cero y uno.
, con
Dado que , también vale la relación:
o el sistema:
La excentricidad indica la forma de unaelipse; una elipse será más redondeada cuanto más se aproxime su excentricidad al valor cero.3 La designación tradicional de la excentricidad es la letra griega ε llamada épsilon.
(No se debe usar la letra e para designarla, porque se reserva para la base de los logaritmos naturales o neperianos).
Excentricidad angular de una elipse
La excentricidad angular es el ángulo para el cual el...
Regístrate para leer el documento completo.