matematicas

Páginas: 5 (1183 palabras) Publicado: 9 de noviembre de 2013
Elipse
La elipse es una línea curva, cerrada y plana cuya definición más usual es:

La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos llamados focos es constante.

Una elipse es la curva simétrica cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que elde la generatriz respecto del eje de revolución.1 Una elipse que gira alreded
Historia[editar · editar código]



Forma elíptica trazada en la antigüedad sobre un muro de Tebas (Egipto).
La elipse, como curva geométrica, fue estudiada por Menecmo, investigada por Euclides, y su nombre se atribuye a Apolonio de Perge. El foco y la directriz de la sección cónica de una elipse fueron estudiadaspor Pappus. En 1602, Kepler creía que la órbita de Marte era ovalada, aunque más tarde descubrió que se trataba de una elipse con el Sol en un foco. De hecho, Kepler introdujo la palabra «focus» y publicó su descubrimiento en 1609. Halley, en 1705, demostró que el cometa que ahora lleva su nombre trazaba una órbita elíptica alrededor del Sol.2

Elementos de una elipse[editar · editar código]La elipse y algunas de sus propiedades matemáticas.
La elipse es una curva plana y cerrada, simétrica respecto a dos ejes perpendiculares entre sí:

El semieje mayor (el segmento C-a de la figura), y
el semieje menor (el segmento C-b de la figura).
Miden la mitad del eje mayor y menor respectivamente.

Puntos de una elipse[editar · editar código]
Los focos de la elipse son dos puntosequidistantes del centro, F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor, (PF1 + PF2 = 2a).

Si F1 y F2 son dos puntos de un plano, y 2a es una constante mayor que la distancia F1F2, un punto P pertenecerá a la elipse si se cumple la relación:

P F_1 + P F_2 = 2a \,
donde a \, es lamedida del semieje mayor de la elipse.

Ejes de una elipse[editar · editar código]
El eje mayor 2a, es la mayor distancia entre dos puntos adversos de la elipse. El resultado constante de la suma de las distancias de cualquier punto a los focos equivale al eje mayor. El eje menor 2b, es la menor distancia entre dos puntos adversos de la elipse. Los ejes de la elipse son perpendiculares entresi.

Excentricidad de una elipse[editar · editar código]
La excentricidad ε (épsilon) de una elipse es la razón entre su semidistancia focal (segmento que va del centro de la elipse a uno de sus focos), denominada por la letra c, y su semieje mayor. Su valor se encuentra entre cero y uno.

Elipse1.0.jpg
\varepsilon=\frac{c}{a} , con (0\le\varepsilon\le1)
Dado que c = \sqrt{a^2-b^2} , tambiénvale la relación:

\varepsilon=\sqrt{\frac{a^2-b^2}{a^2}}
=\sqrt{1-\left(\frac{b}{a}\right)^2}
o el sistema:

\begin{cases}
\varepsilon=\frac{c}{a}\\
c = \sqrt{a^2-b^2} \end{cases}

La excentricidad indica la forma de una elipse; una elipse será más redondeada cuanto más se aproxime su excentricidad al valor cero.3 La designación tradicional de la excentricidad es la letra griega εllamada épsilon.

(No se debe usar la letra e para designarla, porque se reserva para la base de los logaritmos naturales o neperianos. Véase: número e).

Excentricidad angular de una elipse[editar · editar código]
La excentricidad angular \alpha es el ángulo para el cual el valor de la función trigonométrica seno concuerda con la excentricidad \varepsilon, esto es:\alpha=\sin^{-1}(\varepsilon)=\cos^{-1}\left(\frac{b}{a}\right)=2\tan^{-1}\left(\sqrt{\frac{a-b}{a+b}}\right);\,\!
Constante de la elipse[editar · editar código]
Animación elipse.gif
En la figura de la derecha se muestran los dos radio vectores correspondientes a cada punto P de una elipse, los vectores que van de los focos F1 y F2 a P. Las longitudes de los segmentos correspondientes a cada uno son PF1 (color...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Matematica
  • Matematica
  • Matematicas
  • Las matemáticas
  • Matematica
  • Matematicas
  • Matematica
  • Matematicas

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS