Matematicas
En matemáticas, los números reales (designados por ) incluyen tanto a los números racionales (positivos, negativos y el cero) como a los números irracionales (trascendentes y algebraicos), que no se pueden expresar de manera fraccionaria y tienen infinitas cifras decimales no periódicas, tales como: .
Los números reales pueden ser descritos y construidos de varias formas,algunas simples aunque carentes del rigor necesario para los propósitos formales de matemáticas y otras más complejas pero con el rigor necesario para el trabajo matemático formal.
Tipos de números reales
Un número real puede ser un número racional o un número irracional. Los números racionales son aquellos que pueden expresarse como el cociente de dos números enteros, tal como 3/4,-21/3, 5, 0, 1/2, mientras que los irracionales son todos los demás. Los números racionales también pueden describirse como aquellos cuya representación decimal es eventualmente periódica, mientras que los irracionales tienen una expansión decimal aperiódica:
Ejemplos
1/4 = 0,250000... Es un número racional puesto que es periódico a partir del tercer número decimal.
5/7 =0,7142857142857142857.... Es racional y tiene un período de longitud 6 (repite 714285).
es irracional y su expansión decimal es aperiódica.
Operaciones con números reales
Con números reales pueden realizarse todo tipo de operaciones básicas con dos excepciones importantes:
1. No existen raíces de orden par (cuadradas, cuartas, sextas, etc.) de números negativos en números reales, (aunque sí existen en elconjunto de los números complejos donde dichas operaciones sí están definidas).
2. La división entre cero no está definida (pues cero no posee inverso multiplicativo, es decir, no existe número x tal que 0•x=1).
Estas dos restricciones tienen repercusiones en otras áreas de las matemáticas como el cálculo: existen asíntotas verticales en los lugares donde el denominador de una función racionaltiende a cero, es decir, en aquellos valores de la variable en los que se presentaría una división entre cero, o no existe gráfica real en aquellos valores de la variable en que resulten números negativos para raíces de orden par, por mencionar un ejemplo de construcción de gráficas en geometría analítica.
NUMEROS NATURALES.
Un número natural es cualquiera de los números que se usan paracontar los elementos de un conjunto. Reciben ese nombre porque fueron los primeros que utilizó el ser humano para la enumeración.
Operaciones con los números naturales
Las operaciones matemáticas son acciones de relación que permiten a los seres humanos acordar procesos culturales de lectura simbólica de agrupación o construcción, de disgregación o deconstrucción, así como del número de raíces uorigen de un determinado objeto geométrico o de propiedades dimensionales, que se pueden realizar con un determinado conjunto numérico.
Los conjuntos numéricos son espacios en los cuales las operaciones pueden hacerse con elementos de dichos conjuntos y dar como resultado de la acción elementos que pueden estar dentro o fuera de ellos. Si el resultado de la operación siempre da elementos delconjunto numérico, se dice que el espacio es cerrado para dicha operación (cumple con la propiedad de cierre o clausura), si el resultado algunas veces da elementos del conjunto y otras veces no, se dice que el espacio es abierto para dicha operación (no es cerrado, no cumple con la propiedad de cierre o de clausura).
De allí que se puede decir que las operaciones en los números naturales son: laadición cuyo resultado es la suma (operación cerrada, constructora de linealidad), la sustracción cuyo resultado es diferencia o resta (operación abierta deconstructora de la linealidad), la multiplicación cuyo resultado recibe el nombre de producto (operación cerrada, constructora de ortogonalidad (ángulo recto)), la división cuyo resultado es el cociente (operación abierta de doble naturaleza...
Regístrate para leer el documento completo.