Matematicos
|nacimiento |octubre, 1630 |
| |Londres, Inglaterra |
| Fallecimiento |4 de mayo de 1677, (46 años) |
| |Londres, Inglaterra |
|Residencia|[pic] Inglaterra |
|Nacionalidad |Inglés |
|Campo |Matemáticas |
|Instituciones |Universidad de Cambridge |
|Alma máter |Universidad de Cambridge |
|Conocido por|Teorema fundamental del cálculo, Óptica |
Isaac Barrow (Londres, octubre, 1630 – id., 4 de mayo, 1677) fue un teólogo, profesor y matemático inglés al que históricamente se le ha dado menos mérito en su papel en el desarrollo del cálculo moderno. En concreto, en su trabajo respecto a la tangente; por ejemplo, Barrow es famoso por haber sido el primero en calcularlas tangentes en la curva de Kappa. Fue ordenado al año siguiente, así como nombrado profesor Regius de griego en Cambridge. En 1662 fue profesor de Geometría en el Gresham College, y en 1663 fue elegido primer profesor Lucasiano en Cambridge. Mientras ocupaba esta cátedra publicó dos trabajos matemáticos de gran aprendizaje y elegancia, el primero de ellos en Geometría y el segundo en Óptica. En1669 dejó la cátedra en favor de su pupilo, Isaac Newton, quien fue considerado durante mucho tiempo el único matemático inglés que le ha superado. Durante este tiempo también escribió sus Expositions of the Creed, The Lord's Prayer, Decalogue, and Sacraments. El resto de su vida fue muy devota pues se dedicó al estudio de la teología. En 1672 fue director del Trinity College, donde fundó unabiblioteca, que regentó hasta su muerte en Cambridge en 1677.
Leonhard Euler
Contribución a las matemáticas y a otras áreas científicas
Euler trabajó prácticamente en todas las áreas de las matemáticas: geometría, cálculo, trigonometría, álgebra, teoría de números, además de física continua, teoría lunar y otras áreas de la física. Adicionalmente, aportó de manera relevante a la lógica matemáticacon su diagrama de conjuntos
Notación matemática
Euler introdujo y popularizó varias convenciones referentes a la notación en los escritos matemáticos en sus numerosos y muy utilizados libros de texto. Posiblemente lo más notable fue la introducción del concepto de función matemática,[1] siendo el primero en escribir f(x) para hacer referencia a la función f aplicada sobre el argumento x.Esta nueva forma de notación ofrecía más comodidad frente a los rudimentarios métodos del cálculo infinitesimal existentes hasta la fecha, iniciados por Newton y Leibniz, pero desarrollados basándose en las matemáticas del último.
También introdujo la notación moderna de las funciones trigonométricas, la letra e como base del logaritmo natural o neperiano (el número e es conocido también como elnúmero de Euler), la letra griega Σ como símbolo de los sumatorios y la letra [pic]para hacer referencia a la unidad imaginaria.[21] El uso de la letra griega π para hacer referencia al cociente entre la longitud de la circunferencia y la longitud de su diámetro también fue popularizado por Euler, aunque él no fue el primero en usar ese símbolo.[22]
[editar] Análisis
El desarrollo del cálculoera una de las cuestiones principales de la investigación matemática del siglo XVIII, y la familia Bernoulli había sido responsable de gran parte del progreso realizado hasta entonces. Gracias a su influencia, el estudio del cálculo se convirtió en uno de los principales objetos del trabajo de Euler. Si bien algunas de sus demostraciones matemáticas no son aceptables bajo los estándares...
Regístrate para leer el documento completo.