mater

Páginas: 7 (1504 palabras) Publicado: 15 de octubre de 2013
LÓGICA MATEMÁTICA

La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la Lógica proporciona reglas y técnicas para determinar si es o no valido un argumento dado. El razonamiento lógico se emplea en Matemáticas para demostrar teoremas, sin embargo, se usa en forma constante para realizar cualquieractividad en la vida.

PROPOSICIONES
Una proposición o enunciado es una oración que puede ser falso o verdadero pero no ambas a la vez. Toda proposición consta de tres partes: un sujeto, un verbo y un complemento referido al verbo. La proposición es un elemento fundamental de la Lógica Matemática.
A continuación se tienen algunos ejemplos de proposiciones válidas y no válidas, y se explica porqué algunos enunciados no son proposiciones. Las proposiciones se indican por medio de una letra minúscula, dos puntos y la proposición propiamente dicha.
Ejemplos.
p: México se encuentra en Europa.
q: 15−6 = 9
r: 2x −3 > 7
s: Los precios de los teléfonos celulares bajarán a fin de año.
t: Hola ¿cómo estás?
w: ¡Cómete esa fruta!

CLASES DE PROPOSICIONES

• Simples si sólotienen un sujeto, un verbo y un complemento. En caso contrario, son proposiciones Compuestas.
• Cerradas si tienen determinado el sujeto. Abiertas si no lo tienen determinado.
• Afirmativas o Negativas. Según lo afirmen o nieguen.
• Verdaderas o Falsas según correspondan o no a la realidad.

CONECTORES LOGICOS Y TABLAS DE VERDAD

Existen conectores u operadores lógicas que permiten formarproposiciones compuestas (formadas por varias proposiciones). Los operadores o conectores básicos son:

NEGACIÓN
Palabras conectivas: no, no es cierto que, no es verdad que, nunca, carece de, sin, etc.
Prefijos negativos: a, des, in, i.
Condición: lo V se transforma en F (y al revés) P -p


CONJUNCIÓN: .
Palabras conectivas: y, aunque, pero, mas, también, sin embargo, además, etc.Condición: es V cuando ambas son V.


Ejemplo:
Sea el siguiente enunciado "el auto enciende cuando tiene gasolina en el tanque y tiene corriente en la batería"
Sean:
p= tiene gasolina el tanque
q = tiene corriente la batería
r = el auto enciende = p ^ q
La conclusión resultante es que para que el auto encienda se debe tener gasolina en el tanque y corriente en la batería, sino se tiene una deestas dos condiciones el auto no arrancará.


DISYUNCIÓN INCLUSIVA
Una, otra o ambas a la vez. (y/o)
Palabras conectivas: o
Condición: es F cuando las dos son F.



Ejemplo:
Sea el siguiente enunciado "Una persona puede entrar al cine si compra boleto u obtiene un pase"
Sean:
p= compra boleto
q = obtiene un pase
r = una persona entra al cine = p v q
La conclusión resultante esobvia, puesto que para entrar al cine es necesario tener por lo menos una de las dos condiciones: comprar un boleto o tener un pase, si se tiene ambas también se puede entrar, si no tengo ninguna de las dos alternativas entonces no se puede entrar al cine.



DISYUNCIÓN EXCLUSIVA
O una o la otra (NUNCA ambas juntas)
Palabras conectivas:
O ......... o .....
O bien .... o bien
.... a menos que....
.... salvo que ......
Condición: es V cuando uno es V y el otro es F.


LA CONDICIONAL
Palabras conectivas: Si ..p.. entonces ..q.. Si ..p.. , ..q.. Cuando .......p............. , ......q.. Siempre ......p............. , ....q.. Es condición suficiente..p..para que..q.. .........q........ sólo si ......p....... Es condición necesaria...q..para que..p..
Condición: es falsa sólo si elantecedente (p) es V y el consecuente (q) es F.


Ejemplo:
Si se tiene lo proposición "Si un cuerpo se calienta, entonces se dilata", se observa que estamos diciendo es que la primera proposición "si el cuerpo se calienta" implica a la segunda proposición " entonces se dilata", pero no se afirma que el antecedente es verdadero, ni el consecuente es verdadero, puede ser que el cuerpo no se...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Mate
  • Mate
  • Mate
  • Mate
  • Mate
  • Mate
  • Mate
  • Mate

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS