Matrriz

Páginas: 5 (1135 palabras) Publicado: 15 de mayo de 2012
Matriz simétrica
Una matriz de elementos:

es simétrica, si es una matriz cuadrada (m = n) y aij = aji para todo i distinto de j con i, j =1,2,3,4,...,n. Nótese que la simetría es respecto a la diagonal principal.
Ejemplo para n = 3:

A es también la matriz traspuesta de sí misma: At = A. Esta última igualdad es una definición alternativa de matriz simétrica. Las matrices simétricas son uncaso particular de las matrices hermíticas.
Fuente de la 1 : http://es.wikipedia.org/wiki/Matriz_sim%C3%A9trica
Matriz antisimétrica
es antisimétrica (o hemisimétrica), si es una matriz cuadrada (m = n) y aji = − aij para todo i, j =1,2,3,...,n. En consecuencia, aii = 0 para todo i. Por lo tanto, la matriz A asume la forma:

ejemplo
= >

La diagonal principal se conserva y todos losotros números son cambiados de signo al opuesto.
Nótese que la matriz traspuesta de la matriz antisimetrica A es -A, y que la antisimetría es respecto a la diagonal principal.
Si n=m es impar el determinante de la matriz siempre sera 0.
Fuente de la 2 http://es.wikipedia.org/wiki/Matriz_antisim%C3%A9trica
Matriz hermitica
Una matriz Hermitiana (o Hermítica) es una matriz cuadrada deelementos complejos que tiene la característica de ser igual a su propia traspuesta conjugada. Es decir, el elemento en la i-ésima fila y j-ésima columna es igual al conjugado del elemento en la j-ésima fila e i-ésima columna, para todos los índices i y j:

o, escrita con la traspuesta conjugada A*:

Por ejemplo,

Fuente de la 3 http://es.wikipedia.org/wiki/Matriz_hermitiana
matriz estocásticamatriz estocástica (estocástico significa "hábil en conjeturar"): es una matriz en la que todos sus elementos tienen un valor comprendido entre 0 y 1. Además la suma de los elementos de cada columna de una matriz estocástica es igual a 1. Fíjate que se tienen que cumplir las dos condiciones y no basta con una sóla.
Fuente 4 http://www.omerique.net/calcumat/estocasticas0.htm
Matriz triangularuna matriz triangular es un tipo especial de matriz cuadrada cuyos elementos por encima o por debajo de su diagonal principal son cero. Debido a que los sistemas de ecuaciones lineales con matrices triangulares son mucho más fáciles de resolver, las matrices triangulares son utilizadas en análisis numérico para resolver sistemas de ecuaciones lineales, calcular inversas y determinantes de matrices.Esta matriz es triangular superior.

Esta matriz es triangular inferior.
Fuente 6 http://es.wikipedia.org/wiki/Matriz_triangular
factorizacion lu
la factorización o descomposición LU (del inglés Lower-Upper) es una forma de factorización de una matriz como el producto de una matriz triangular inferior y una superior. Debido a la inestabilidad de este método, por ejemplo si un elemento dela diagonal es cero, es necesario premultiplicar la matriz por una matriz de permutación. Método llamado factorización PA = LU o LU con pivote.
Esta descomposición se usa en el análisis numérico para resolver sistemas de ecuaciones (más eficientemente) o encontrar las matrices inversas.
Sea A una matriz no singular (si lo fuera, entonces la descomposición podría no ser única)

donde L y U sonmatrices inferiores y superiores triangulares.
Para matrices , esto es:

Por otro lado la descomposición PLU tiene esta forma:
Lm − 1Pm − 1...L2P2L1P1A = U
Con Lm − 1...L1 matrices triangulares inferiores, Pm − 1...P1 matrices de permutacion y U una matriz triangular superior.
Para determinar L:
L = (L'm − 1 * ... * L'2 * L'1) − 1
y cada L'k está dado por:
L'k =
Esto se debe a que L'kes igual a Lk, pero con los elementos de la subdiagonal permutados.
Otra forma de ver éste tipo de factorización es: A = PTLU Recordando que las matrices de permutación matriz permutación son invertibles y su inversa es su traspuesta
Fuente 7 http://es.wikipedia.org/wiki/Descomposici%C3%B3n_LU
Matriz ortogonal
Una matriz ortogonal es un matriz cuya matriz inversa coincide con su matriz...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Matrriz De Riesgos
  • Matrriz
  • matrriz foda

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS