MEDIDAS DE TENDENCIA CENTRAL
Entre las medidas de tendencia central tenemos:
Media.
Media ponderada.
Media geométrica.
Media armónica.
Mediana.
Moda.
Se debe tener en cuenta que existen variables cualitativas y variables cuantitativas, por lo que las medidas deposición o medidas de tendencia se usan de acuerdo al tipo de variable que se está observando, en este caso se observan variables cuantitativas.
La media aritmética[
La media aritmética es el valor obtenido por la suma de todos sus valores dividida entre el número de sumandos.
Por ejemplo, las notas de 5 alumnos en una prueba:
niño nota
1 6,0 ·Primero, se suman las notas:
2 5,46,0+5,4+3,1+7,0+6,1 = 27,6
3 3,1 ·Luego el total se divide entre la cantidad de alumnos:
4 7,0 27,6/5=5,52
5 6,1
· La media aritmética en este ejemplo es 5,52
La media aritmética es, probablemente, uno de los parámetros estadísticos más extendidos.2 Se le llama también promedio o, simplemente, media.
Definición formal[editar]
Dado un conjuntonumérico de datos, x1, x2, ..., xn, se define su media aritmética como
Esta definición varía, aunque no sustancialmente, cuando se trata de variables continuas, esto es, también puede calcularse para variables agrupadas en intervalos
Propiedades[editar]
Las principales propiedades de la media aritmética son:3
Su cálculo es muy sencillo y en él intervienen todos los datos.
Su valor es único parauna serie de datos dada.
Se usa con frecuencia para comparar poblaciones, aunque es más apropiado acompañarla de una medida de dispersión.
Se interpreta como "punto de equilibrio" o "centro de masas" del conjunto de datos, ya que tiene la propiedad de equilibrar las desviaciones de los datos respecto de su propio valor:
Minimiza las desviaciones cuadráticas de los datos respecto de cualquiervalor prefijado, esto es, el valor de es mínimo cuando . Este resultado se conoce como Teorema de König. Esta propiedad permite interpretar uno de los parámetros de dispersión más importantes: la varianza.
Se ve afectada por transformaciones afines (cambios de origen y escala), esto es, si
entonces , donde es la media aritmética de los , para i = 1, ..., n y a y b números reales.
Es pocosensible a fluctuaciones muestrales, por lo que es un parámetro muy útil en inferencia estadística.
Inconvenientes de su uso[editar]
Este parámetro, aún teniendo múltiples propiedades que aconsejan su uso en situaciones muy diversas, tiene también algunos inconvenientes, como son:
Para datos agrupados en intervalos (variables continuas) su valor oscila en función de la cantidad y amplitud de losintervalos que se consideren.
La estatura media como resumen de una población homogénea (abajo) o heterogénea (arriba).
Es una medida a cuyo significado afecta sobremanera la dispersión, de modo que cuanto menos homogéneos sean los datos, menos información proporciona. Dicho de otro modo, poblaciones muy distintas en su composición pueden tener la misma media.4 Por ejemplo, un equipo debaloncesto con cinco jugadores de igual estatura, 1,95 m, evidentemente, tendría una estatura media de 1,95 m, valor que representa fielmente a esta población homogénea. Sin embargo, un equipo de jugadores de estaturas más heterogéneas, 2,20 m, 2,15 m, 1,95 m, 1,75 m y 1,70 m, por ejemplo, tendría también, como puede comprobarse, una estatura media de 1,95 m, valor que no representa a casi ninguno...
Regístrate para leer el documento completo.