Mercadeo

Páginas: 11 (2541 palabras) Publicado: 27 de julio de 2011
la correlación indica la fuerza y la dirección de una relación lineal entre dos variables aleatorias. Se considera que dos variables cuantitativas están correlacionadas cuando los valores de una de ellas varían sistemáticamente con respecto a los valores homónimos de la otra: si tenemos dos variables (A y B) existe correlación si al aumentar los valores de A lo hacen también los de B yviceversa. La correlación entre dos variables no implica, por sí misma, ninguna relación de causalidad (Véase Cum hoc ergo propter hoc).

La correlación trata de establecer la relación o dependencia que existe entre las dos variables que intervienen en una distribución bidimensional.
Es decir, determinar si los cambios en una de las variables influyen en los cambios de la otra. En caso de que suceda,diremos que las variables están correlacionadas o que hay correlación entre ellas.

Tipos de correlación
1º Correlación directa
La correlación directa se da cuando al aumentar una de las variables la otra aumenta.
La recta correspondiente a la nube de puntos de la distribución es una recta creciente.

2º Correlación inversa
La correlación inversa se da cuando al aumentar una de lasvariables la otra disminuye.
La recta correspondiente a la nube de puntos de la distribución es una recta decreciente.

3º Correlación nula
La correlación nula se da cuando no hay dependencia de ningún tipo entre las variables.
En este caso se dice que las variables son incorreladas y la nube de puntos tiene una forma redondeada.

Grado de correlación
El grado de correlación indica laproximidad que hay entre los puntos de la nube de puntos. Se pueden dar tres tipos:
1. Correlación fuerte
La correlación será fuerte cuanto más cerca estén los puntos de la recta.

2. Correlación débil
La correlación será débil cuanto más separados estén los puntos de la recta.

3. Correlación nula
ASPECTOS TEÓRICOS
REGRESIÓN SIMPLE Y CORRELACIÓN
La Regresión y la correlación son dos técnicasestadísticas que se pueden utilizar para solucionar problemas comunes en los negocios.
Muchos estudios se basan en la creencia de que es posible identificar y cuantificar alguna Relación Funcional entre dos o más variables, donde una variable depende de la otra variable.
Se puede decir que Y depende de X, en donde Y y X son dos variables cualquiera en un modelo de Regresión Simple.
"Y es unafunción de X"
Y = f(X)
Como Y depende de X,
Y es la variable dependiente, y
X es la variable independiente.
En el Modelo de Regresión es muy importante identificar cuál es la variable dependiente y cuál es la variable independiente.
En el Modelo de Regresión Simple se establece que Y es una función de sólo una variable independiente, razón por la cual se le denomina también RegresiónDivariada porque sólo hay dos variables, una dependiente y otra independiente y se representa así:
Y = f (X)
"Y está regresando por X"
La variable dependiente es la variable que se desea explicar, predecir. También se le llama REGRESANDO ó VARIABLE DE RESPUESTA.
La variable Independiente X se le denomina VARIABLE EXPLICATIVA ó REGRESOR y se le utiliza para EXPLICAR Y.
ANÁLISIS ESTADÍSTICO:REGRESIÓN LINEAL SIMPLE
En el estudio de la relación funcional entre dos variables poblacionales, una variable X, llamada independiente, explicativa o de predicción y una variable Y, llamada dependiente o variable respuesta, presenta la siguiente notación:
Y = a + b X + e
Donde:
a es el valor de la ordenada donde la línea de regresión se intercepta con el eje Y.
b es el coeficiente de regresiónpoblacional (pendiente de la línea recta)
e es el error
SUPOSICIONES DE LA REGRESIÓN LINEAL
1. Los valores de la variable independiente X son fijos, medidos sin error.
2. La variable Y es aleatoria
3. Para cada valor de X, existe una distribución normal de valores de Y (subpoblaciones Y)
4. Las variancias de las subpoblaciones Y son todas iguales.
5. Todas las medias de las...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Mercadeo
  • Mercadeo
  • Mercadeo
  • Mercadeo
  • Mercadeo
  • Mercadeo
  • Mercadeo
  • Mercadeo

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS