multiplicacion de polinomios
Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número y dejando las mismas partes literales.
Ejemplo
3 · (2x3 − 3x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6
2. Multiplicación de un monomio por un polinomio
Se multiplica el monomio por todos y cada uno de losmonomios que forman el polinomio.
Ejemplo:
3x2 · (2x3 − 3x2 + 4x − 2) =
= 6x5− 9x4 + 12x3 − 6x2
3. Multiplicación de polinomios
Este tipo de operaciones se puede llevar a cabo de dos formas distitnas.
Mira la demostración con el siguiente ejemplo:
P(x) = 2x2 − 3 Q(x) = 2x3 − 3x2 + 4x
OPCIÓN 1EJEMPLO 1: (Multiplicación por un monomio)
A = -3x2 + 2x4 - 8 - x3 + 5x
B = -5x4-3x2 + 2x4 - 8 - x3 + 5x
X -5x4
______________________________
15x6 - 10x8 + 40x4 + 5 x7 - 25x5
A x B = 15x6 - 10x8 + 40x4 + 5 x7 - 25x5
Se multiplica al monomio por cada término del polinomio: Coeficiente con coeficiente, y la letra con la letra. Al multiplicar las letras iguales se suman los exponentes, ya que es unamultiplicación de potencias de igual base.
También se pueden multiplicar "en el mismo renglón": poniendo el polinomio entre paréntesis y luego aplicando la propiedad distributiva. En las EXPLICACIONES muestro los ejemplos resueltos de las dos maneras.
EXPLICACIÓN DEL EJEMPLO 1
EJEMPLO 2: (Multiplicación de polinomios completos)
A = 4x3 - 5x2 + 2x + 1
B = 3x - 64x3 - 5x2 + 2x + 1 (el polinomio A ordenado y completo)
X 3x - 6 (el polinomio B ordenado y completo)
____________________
-24x3 + 30x2 - 12x - 6
+
12x4 - 15x3 + 6x2 + 3x
_________________________
12x4 - 39x3 + 36x2 - 9x - 6
A x B = 12x4 - 39x3 + 36x2 - 9x - 6
A cada término delsegundo polinomio hay que multiplicarlo por cada término del primer polinomio. Si ambos polinomios están completos y ordenados, los resultados quedan también completos y ordenados, y es más fácil encolumnarlos según su grado, porque van saliendo en orden. Luego hay que sumar los resultados como se suman los polinomios. Es un procedimiento similar al de la multiplicación de números de varias cifras,con la diferencia de que no se "llevan" números a la columna siguiente, sino que se baja el resultado completo. Al empezar la segunda fila, por la derecha hay que saltearse una columna, tal como en la multiplicación de números de varias cifras, y así se logra que los términos de igual grado queden en la misma columna.
EXPLICACIÓN DEL EJEMPLO 2
EJEMPLO 3: (Multiplicación depolinomios incompletos y desordenados, completándolos y ordenándolos)
A = -9x2 + x + 5x4
B = 3 - 2x2
5x4 + 0x3 - 9x2 + x + 0 (polinomio A completo y ordenado)
X -2x2 + 0x + 3 (polinomio B completo y ordenado)
______________________________
15x4 + 0x3 - 27x2 + 3x + 0
0x5 + 0x4+ 0x3 + 0x2 + 0x
-10x6 + 0x5 + 18x4 - 2x3 + 0x2
________________________________________
-10x6 + 0x5 + 33x4 - 2x3 - 27x2 + 3x + 0
A x B = -10x6 + 33x4 - 2x3 - 27x2 + 3x
Aunque no es obligatorio, se pueden completar y ordenar los dos polinomios. Así es más fácil ubicar en la columna correspondiente a cada uno de los resultados, porque todo va saliendo en orden de grado.Incluso si se completa con 0 en el segundo polinomio, se puede multiplicar todo el primer polinomio por cero. Esto puede servir cuando uno recién aprende el tema, pero luego cuando se tiene más práctica se preferirá no completar ni multiplicar por cero. En el EJEMPLO 4 se puede ver hecha esta misma multiplicación sin completar los polinomios.
En el resultado final ya no se ponen los términos con...
Regístrate para leer el documento completo.