musica

Páginas: 13 (3222 palabras) Publicado: 10 de noviembre de 2013
ACTIVIDAD 3.
TEORÍA DEL CONSUMIDOR.


FECHA DE ENTREGA DE LA ACTIVIDAD: 22 DE SEPTIEMBRE
FECHA DE ENTREGA DEL EXAMEN: 29 DE SEPTIEMBRE

Nombre: Maximiliano Rodríguez Robles
No. de cuenta: 413141097


PREGUNTAS DE REPASO

1. Determine la función de la restricción presupuestaria.
Límite que la renta impone a la cantidad de bienes que una persona puede comprar. La cesta será igual oinferior a la renta


I = Ingresos
X= consumo del bien x
Y= consumo del bien y
Px= Precio del bien x
Py= Precio del bien y


2. ¿Cuáles son las características y supuestos de las curvas de indiferencia?

Tienen pendiente negativa
Se supone que si hablamos de cestas de dos bienes, siempre más es preferible a menos. Es decir, si tenemos una cesta de bienes (x1, y1) y otra cesta (x2,y2) tal que la segunda contiene la misma cantidad de uno de los bienes y más de uno de ellos, la segunda cesta será preferida a la primera. Este supuesto se denomina “preferencias monótonas”. Este supuesto de preferencias monótonas implica que las curvas de indiferencia tienen pendiente negativa. Miremos la Figura 5 si partimos de la cesta (x1, y1) y nos desplazamos en sentido ascendente y hacia laderecha, nos encontraremos sí o sí en una cesta preferida. En cambio si nos movemos hacia abajo y a la izquierda, necesariamente estaremos en una situación peor. Por lo tanto, para encontrar una situación indiferente, debemos movernos o bien, hacia arriba a la izquierda o bien, hacia abajo a la derecha, por lo tanto la curva debe tener pendiente negativa.

Las curvas de indiferencia no se cortanentre sí.
Supongamos tres cestas de consumo, A, B y C, tales que A se encuentre en una de las curvas, B sobre la otra curva y C en la intersección de ambas, como vemos en la Figura 6.  Partimos del supuesto de que las curvas de indiferencia allí dibujadas representan distintos niveles de utilidad, por lo que una de las cestas, por ejemplo la A es preferida a la B. Según la definición de curvasde indiferencia, sabemos que la cesta A es indiferente a la C y que la cesta C es indiferente a la cesta B. Si utilizamos el supuesto de transitividad, deberíamos obtener que las cestas A y B sean indiferentes. Pero como habíamos supuesto al principio A es preferida a B, con lo que demostramos que las curvas de indiferencia que representan distintos niveles de utilidad, no pueden cortarse.

Sonconvexas al origen.
Esto es lo mismo que decir que se prefieren las cestas medias a las cestas con combinaciones extremas (nada de un bien y todo del otro bien). Una curva es convexa al origen cuando la línea que conecta dos puntos de la curva pasa por encima de la curva de indiferencia. Este supuesto no puede demostrarse desde los supuestos de las preferencias, sino que se basa en el principio dela diversidad en el consumo.
Este supuesto es útil en el sentido de encontrarnos con curvas de indiferencia que impliquen que el consumidor preferiría especializarse en el consumo de uno de los dos bienes. Estos son casos de estudio particulares. El caso de estudio general se refiere a aquel en que el consumidor desea intercambiar una parte de uno de los bienes por una parte del otro y terminarconsumiendo una cierta cantidad de cada uno más que especializarse en el consumo de alguno de los dos.
La relación marginal de sustitución
Técnicamente, la relación marginal de sustitución (RMS) es la pendiente en un punto de la curva de indiferencia. La RMS mide la relación a la que el consumidor está dispuesto a intercambiar, o sustituir, el consumo de un bien por el otro. En la Figura8 podemos ver cómo varía la RMS a medida que nos movemos a través de los puntos de la curva de indiferencia. Si comenzamos a movernos desde el punto A, vemos que el consumidor está dispuesto a sacrificar 5 unidades de y por una unidad adicional de x; para pasar del punto B al C, nuestro consumidor está dispuesto a renunciar al consumo de 2 unidades de y por una unidad más de x. Ahora bien, si el le...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Musica musica
  • Musica
  • Musica
  • La musica
  • Musica
  • Musica
  • Musica
  • Musica

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS