nnnnhgdhc

Páginas: 10 (2252 palabras) Publicado: 27 de febrero de 2014
n matemáticas, se dice que una magnitud o cantidad es función de otra si el valor de la primera depende exclusivamente del valor de la segunda. Por ejemplo el área A de un círculo es función de su radio r: el valor del área es proporcional al cuadrado del radio, A = π·r2. Del mismo modo, la duración T de un viaje de tren entre dos ciudades separadas por una distancia d de 150 km depende de lavelocidad v a la que este se desplace: la duración es inversamente proporcional a la velocidad, d / v. A la primera magnitud (el área, la duración) se la denomina variable dependiente, y la cantidad de la que depende (el radio, la velocidad) es la variable independiente.
En análisis matemático, el concepto general de función, aplicación o mapeo se refiere en a una regla que asigna a cada elementode un primer conjunto un único elemento de un segundo conjunto (correspondencia matemática). Por ejemplo, cada número entero posee un único cuadrado, que resulta ser un número natural (incluyendo el cero):
 ...
 −2 → +4,
 −1 → +1,
 ±0 → ±0,


 +1 → +1,
 +2 → +4,
 +3 → +9,
 ...
Esta asignación constituye una función entre el conjunto de los números enteros Z y el conjunto de los númerosnaturales N. Aunque las funciones que manipulan números son las más conocidas, no son el único ejemplo: puede imaginarse una función que a cada palabra del español le asigne su letra inicial:
...,
Estación → E,
Museo → M,
Arroyo → A,
Rosa → R,
Avión → A,
...
Esta es una función entre el conjunto de las palabras del español y el conjunto de las letras del alfabeto español.
La manerahabitual de denotar una función f es:
f: A → B
 a → f(a),
donde A es el dominio de la función f, su primer conjunto o conjunto de partida; e B es el codominio de f, su segundo conjunto o conjunto de llegada. Por f(a) se denota la regla o algoritmo para obtener la imagen de un cierto objeto arbitrario a del dominio A, es decir, el (único) objeto de B que le corresponde. En ocasiones esta expresión essuficiente para especificar la función por completo, infiriendo el dominio y codominio por el contexto. En el ejemplo anterior, las funciones «cuadrado» e «inicial», llámeseles f y g, se denotarían entonces como:
f: Z → N
 k → k2, o sencillamente f(k) = k2;
g: V → A
 p → Inicial de p;
si se conviene V = {Palabras del español} y A = {Alfabeto español}.
Una función puede representarse dediversas formas: mediante el citado algoritmo o ecuaciones para obtener la imagen de cada elemento, mediante una tabla de valores que empareje cada valor de la variable independiente con su imagen —como las mostradas arriba—, o como una gráfica que dé una imagen de la función.
En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio) y otro conjunto de elementos Y(llamado codominio) de forma que a cada elemento x del dominio le corresponde un único elemento f(x) del codominio (los que forman el recorrido, también llamado rango o ámbito).
Ver: Relaciones y funciones
En lenguaje cotidiano o más simple, diremos que las funciones matemáticas equivalen al proceso lógico común que se expresa como “depende de”.
Las funciones matemáticas pueden referirse asituaciones cotidianas, tales como: el costo de una llamada telefónica que depende de su duración, o el costo de enviar una encomienda que depende de su peso.
A modo de ejemplo, ¿cuál sería la regla que relaciona los números de la derecha con los de la izquierda en la siguiente lista?:
                          1 -------->   1
                          2 -------->   4
                          3-------->   9
                          4 --------> 16
Los números de la derecha son los cuadrados de los de la izquierda.
La regla es entonces "elevar al cuadrado":
                           1 -------->   1
                          2 -------->   4
                          3 -------->   9
                          4 --------> 16
                           x -------->   x2.
Para...
Leer documento completo

Regístrate para leer el documento completo.

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS