Nosequeponer
Luego, con la trigonometría árabe-musulmana de la Edad Media el teorema evoluciona a su forma y en su alcance: el astrónomo y matemático al-Battani3 generalizó el resultado de Euclides en la geometría esférica a principios del siglo X, lo que permitió efectuar los cálculos de ladistancia angular entre el Sol y la Tierra.4 5 Fue durante el mismo período cuando se establecieron las primeras tablas trigonométricas, para las funciones seno y coseno. Eso permitió a Ghiyath al-Kashi,6 matemático de la escuela de Samarcanda, de poner el teorema bajo una forma utilizable para la triangulación durante el siglo XV. La propiedad fue popularizada en occidente por François Viètequien, al parecer, lo redescubrió independientemente.7
Fue a finales del siglo XVII cuando la notación algebraica moderna, aunada a la notación moderna de las funciones trigonométricas introducida por Euler en su libro Introductio in analysin infinitorum, permitieron escribir el teorema bajo su forma actual, extendiéndose el nombre de teorema (o ley) del coseno.
Demostración[editar]
Elteorema de los senos establece que a/sin(A) es constante.
Dado el triángulo ABC, denotamos por O su circuncentro y dibujamos su circunferencia circunscrita. Prolongando el segmento BO hasta cortar la circunferencia, se obtiene un diámetro BP.
Ahora, el triángulo PCB es recto, puesto que BP es un diámetro, y además los ángulos A y P son iguales, porque ambos son ángulos inscritos que abren elsegmento BC (Véase definición de arco capaz). Por definición de la función trigonométrica seno, se tiene
\sin\,A=\sin\,P=\frac{BC}{BP} = \frac{a}{2R}
donde R es el radio de la circunferencia. Despejando 2R obtenemos:
\frac{a}{\sin\,A} = 2R
Repitiendo el procedimiento con un diámetro que pase por A y otro que pase por C, se llega a que las tres fracciones tienen el mismo valor 2R y por tantoson iguales.
La conclusión que se obtiene suele llamarse teorema de los senos generalizado y establece:
Para un triángulo ABC donde a, b, c son los lados opuestos a los ángulos A, B, C respectivamente, si R denota el radio de la circunferencia circunscrita, entonces:
\frac{a}{\sin\,A} =\frac{b}{\sin\,B} =\frac{c}{\sin\,C}=2R.
Puede enunciarse el teorema de una forma alternativa:
Enun triángulo, el cociente entre cada lado y el seno de su ángulo opuesto es constante e igual al diámetro de la circunferencia circunscrita.
Aplicación[editar]
El teorema del seno es usado con frecuencia para resolver problemas en los que se conoce un lado del triángulo y dos ángulos y se desea encontrar las medidas de los otros lados.
Definiciones exponenciales[editar]
La mayor parte defunciones trigonométricas admiten una formulación en términos de números complejos, algunos ejemplos:
Función Función inversa
\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \, \arcsin x = -i \ln \left(ix + \sqrt{1 - x^2}\right) \,
\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \, \arccos x = -i \ln \left(x + \sqrt{x^2 - 1}\right) \,
\tan \theta = \frac{e^{i\theta} -e^{-i\theta}}{i(e^{i\theta} + e^{-i\theta})} \, \arctan x = \frac{i}{2} \ln \left(\frac{i + x}{i - x}\right) \,
\csc \theta = \frac{2i}{e^{i\theta} - e^{-i\theta}} \, \arccsc x = -i \ln \left(\tfrac{i}{x} + \sqrt{1 - \tfrac{1}{x^2}}\right) \,
\sec \theta = \frac{2}{e^{i\theta} + e^{-i\theta}} \, \arcsec x = -i \ln \left(\tfrac{1}{x} + \sqrt{1 - \tfrac{i}{x^2}}\right) \,
\cot \theta = \frac{i(e^{i\theta} +e^{-i\theta})}{e^{i\theta} - e^{-i\theta}} \, \arccot x = \frac{i}{2} \ln \left(\frac{i - x}{i + x}\right) \,
\operatorname{cis} \, \theta = e^{i\theta} \, \operatorname{arccis} \, x = \frac{\ln x}{i} \,
Conceptos básicos[editar]
Identidades trigonométricas fundamentales.
Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectángulo asociado a...
Regístrate para leer el documento completo.