Petardoo
Páginas: 11 (2719 palabras)
Publicado: 9 de septiembre de 2011
215
Review Exercises for Chapter 14
1. F x, y, z
z 3 2
xi
j
2k
3. f x, y, z F x, y, z
8x 2 16x
xy yi
z2 xj 2z k
3 4 x 4 y
5. Since M y
1 y2
N
x, F is not conservative. x 6xy 2 y3 7y 3x 2 and N U y 6x 2 y 3y 2 7, g x which suggests h y y3 7y,
N x, F is conservative. From M U 7. Since M y 12xy partial integration yieldsU 3x 2 y 2 x3 h y and U 3x 2 y 2 gx x3, and U x, y 3x 2 y 2 x3 y3 7y C. 9. Since M y 4x N , x
P M 1 . z x F is not conservative. 11. Since M y 1 y 2z N , x M z 1 yz2 P , x N z x y 2z2 P , y
F is conservative. From M we obtain U x yz x2i 2x P y f y, z , U x yz g x, z , U x yz h x, y ⇒ f x, y, z x yz K U x 1 , N yz U y x , P y 2z U z x yz2
13. Since F (a) div F (b) curl F
y 2j 2y
z2k: 2z N i z P x M j z N x M k y 0i 0j 0k 0
15. Since F (a) div F (b) curl F
cos y
y cos x i x cos y cos x
sin x xy sin y
x sin y j
x yz k:
y sin x xz i yz j
sin y
cos x k
xz i
yz j
216
Chapter 14
Vector Analysis ln x 2 2x x2 2x x2 (b) curl F 2x x2 y2 2y y2 2y k y2 x2 1 y2 i ln x 2 2y y2 y2 j 1
17. Since F
arcsin x i xy 2 j yz2 k: 1 (a) div F 2xy 2yz1 x2 (b) curl F z2 i y2k
19. Since F (a) div F
z k:
21. (a) Let x x2
C
t, y
t, y 2 ds
1 ≤ t ≤ 2, then ds
2
2 dt. 2 2 t3 3
2
2t 2 2 dt
1
6 2
1
(b) Let x x2
C
4 cos t, y y 2 ds
4 sin t, 0 ≤ t ≤ 2 , then ds
2
4 dt.
16 4 dt
0
128
23. x
cos t x2
C
t sin t, y y 2 ds
sin t
2
t cos t, 0 ≤ t ≤ 2 , cos t t sin t
2 2
dx dt
t cos t,t cos t
2
dy dt
t sin t
2
sin t
t 2 cos2 t
t 2 sin2 t dt
0
t3
t dt
0
2 25. (a) Let x 2t, y 2x
C
2
1
2
3t, 0 ≤ t ≤ 1
1 1
y dx
x
3y dy
0
7t 2 3 sin t dt, dy
2
7t
3 dt
0
35t dt
35 2
(b) x
3 cos t, y 2x
C
3 sin t, dx x 3y dy
3 cos t dt, 0 ≤ t ≤ 2 9 sin t cos t dt 18
y dx
9
0
27.
C
2x x t y t 2x
C
yds, r t 3a 3a
a cos3 t i
a sin3 t j, 0 ≤ t ≤
2
cos2 t sin t sin2 t cos t
2
y ds
0
2a
cos3 t
a
sin3 t
x t
2
y t 2 dt
9 a2 5
29. f x, y C: y rt r t r t
5
sin x
y
3x from 0, 0 to 2, 6 ti i 3t j, 0 ≤ t ≤ 2 3j 10
Lateral surface area:
2 2
f x, y ds
C2 0
5
sin t
3t
10 dt
10
0
5
sin 4t dt
10 41 4
cos 8
32.528Review Exercises for Chapter 14 31. d r F F
C
217
2t i t5 i dr
3t 2 j dt t 4 j, 0 ≤ t ≤ 1
1
33. dr F F
C
2 sin t i 2 cos t i
2
2 cos t j 2 sin t j
k dt
t k, 0 ≤ t ≤ 2
2
5t 6 dt
0
5 7
dr
0
t dt
2
35. Let x F F
C
t, y t dr
2
t, z 2t 2 i
2
2t 2, 2t 2 tj 4t 3
2 ≤ t ≤ 2, dr 2t k 64 3
i
j
4t k dt.
3 2 2
4t 2 dt
37. For yFor y xy dx
C
x 2, r1 t 2x, r2 t x2
ti 2 y 2 dy
t 2 j, 0 ≤ t ≤ 2 ti 4 xy dx
C1
y
y = 2x
4 3
2t j, 0 ≤ t ≤ 2 x2 32 4 3 y 2 dy
C2
(2, 4) C2 y = x2 C1
x
1 2 3 4
xy dx
x2
y 2 dy
2
100 3
1
39. F
xi
y j is conservative. 1 2 x 2 2 3 y 3
4, 8 2 0, 0
Work
1 16 2 x 2 yz
2 3 8 3
1, 4, 3
2
8 3 3 12
4 2
41.
C
2xyz dx
x 2z dyx 2 y dz
0, 0, 0
1
43. (a)
C
y 2 dx
2xy dy
0 1
1 3 t2
0 1
t
2
3 1
21
3t 1 2 3t 2 4t
t dt 1 dt
2t 14t 7t 2
9t 2
0
5 dt
1
3t 3
4
5t
0
15 t 1 2 t dt
(b)
C
y 2 dx
2xy dy
1 4
t1 t
1 4
2t t dt 15
t2
1
(c) F x, y Hence, F
C
y 2i
2xy j
f where f x, y
xy 2.
dr
42
2
11
2
15
2
2
245.
C
y dx
2x dy
0 0
2
1 dy dx
0
2 dx
4
47.
C
xy 2 dx
x 2y dy
R
2xy
2xy dA
0
218
Chapter 14
Vector Analysis
1 x 1
49.
C
xy dx
x 2 dy
0 x
2
x dy dx
0
x2
x3 dx
1 12
51. r u, v 0 ≤ u ≤
sec u cos v i 3
1
2 tan u sin v j
2u k
6
z
, 0 ≤ v ≤ 2
−4 2 4 x −2 2 4 y
53. (a)
3 −4 4 x −2 −3
z
(b)
3...
Leer documento completo
Regístrate para leer el documento completo.