Pitagoras
Los pitagóricos atribuían todos sus descubrimientos a Pitágoras por lo que es difícil determinar con exactitud cuales resultados son obradel maestro y cuales de los discípulos.
Los números pentagonales son un ejemplo de números figurados.
Entre los descubrimientos que se atribuyen a la escuela de Pitágoras están:[2]
Una prueba del teorema de Pitágoras. Si bien los pitagóricos no descubrieron este teorema (ya era conocido y aplicado en Babilonia y la India desde hacía un tiempo considerable), sí fueron los primeros enencontrar una demostración formal del teorema. También demostraron el converso del teorema (si los lados de un triángulo satisfacen la ecuación, entonces el triángulo es recto).
Ternas pitagóricas. Una terna pitagórica es una terna de números enteros (a, b, c) tales que a² + b² = c². Aunque los babilonios ya sabían cómo generar tales ternas en ciertos casos, los pitagóricos extendieron el estudio deltema encontrando resultados como cualquier entero impar es miembro de una terna pitagórica primitiva. Sin embargo, la solución completa del problema no se obtuvo hasta el siglo XIII cuando Fibonacci encontró la forma de generar todas las ternas pitagóricas posibles.[3]
Sólidos regulares. Los pitagóricos descubrieron el dodecaedro y demostraron que sólo existen 5 poliedros regulares.
Númerosperfectos. Estudiaron los números perfectos, es decir aquellos números que son iguales a la suma de sus divisores propios (por ejemplo 6=1+2+3). Encontraron una fórmula para obtener ciertos números perfectos pares.
Números amigables. Un par de números son amigables si cada uno es igual a la suma de los divisores propios del otro. Jámblico atribuye a Pitágoras haber descubierto el par amigable (220,284).
Números irracionales. El descubrimiento de que la diagonal de un cuadrado de lado 1 no puede expresarse como un cociente de números enteros marca el descubrimiento de los números irracionales.
Medias. Los pitagóricos estudiaron la relación entre las medias aritmética, geométrica y armónica de dos números y obtuvieron la relación .
Números figurados. Un número es figurado (triangular,cuadrangular, pentagonal, hexagonal, etc.) si tal número de guijarros se pueden acomodar formando el polígono correspondiente con lados 1,2,3, etc. (ver figura).
El Teorema de Pitágoras establece que en un triángulo rectángulo, el área del cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de las áreas del cuadrado de los catetos (los dos lados menores deltriángulo, los que conforman el ángulo recto).
Teorema de Pitágoras
En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.
Pitágoras de Samos
Si un triángulo rectángulo tiene catetos de longitudes y , y la medida de la hipotenusa es , se establece que:
(1)
De la ecuación (1) se deducen fácilmente 3 corolarios de aplicación práctica:Pitágoras ( c²=a²+b² ) – Fórmulas prácticas
Historia
El Teorema de Pitágoras lleva este nombre porque su descubrimiento recae sobre la escuela pitagórica. Anteriormente, en Mesopotamia y el Antiguo Egipto se conocían ternas de valores que se correspondían con los lados de un triángulo rectángulo, y se utilizaban para resolver problemas referentes a los citados triángulos, tal como se indicaen algunas tablillas y papiros. Sin embargo, no ha perdurado ningún documento que exponga teóricamente su relación. La pirámide de Kefrén, datada en el siglo XXVI a. C., fue la primera gran pirámide que se construyó basándose en el llamado triángulo sagrado egipcio, de proporciones 3-4-5.
Designaciones convencionales
Triángulos — Resumen de convenciones de designación
Vértices
A
B
C...
Regístrate para leer el documento completo.