Polinomio

Páginas: 6 (1432 palabras) Publicado: 21 de octubre de 2012
Polinomio
En matemáticas, un polinomio (del griego, «poli»-muchos y «νόμος»-división, y del latín «binomius»)1 2 3 es una expresión constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. Entérminos más precisos, es una combinación lineal de productos de potencias enteras de una o de varias indeterminadas.
Es frecuente el término polinomial, como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, como por ejemplo: tiempo polinomial, etc.
Los polinomios son objetos muy utilizados en matemáticas y en ciencia. En la práctica, son utilizadosen cálculo y análisis matemático para aproximar cualquier función derivable; las ecuaciones polinómicas y las funciones polinómicas tienen aplicaciones en una gran variedad de problemas, desde la matemática elemental y el álgebra hasta áreas como la física, química, economía y las ciencias sociales.
En áreas de las matemáticas aplicadas, los polinomios son utilizados para construir los anillos depolinomios, un concepto central en álgebra abstracta y geometría algebraica.
Contenido [ocultar]
1 Definición algebraica
1.1 Polinomios de una variable
1.2 Polinomios de varias variables
2 Grado de un polinomio
3 Operaciones con polinomios
4 Funciones polinómicas
4.1 Ejemplos de funciones polinómicas
5 Factorización de polinomios
6 Historia
7 Véase también
8 Referencias
9 Enlacesexternos
[editar]Definición algebraica

[editar]Polinomios de una variable
Para a0, …, an constantes en algún anillo A (en particular podemos tomar un cuerpo, como o , en cuyo caso los coeficientes del polinomio serán números) con an distinto de cero y , entonces un polinomio, , de grado n en la variable x es un objeto de la forma

El polinomio se puede escribir más concisamente usandosumatorios como

Las constantes a0, …, an se llaman los coeficientes del polinomio. A a0 se le llama el coeficiente constante (o término independiente) y a an, el coeficiente principal. Cuando el coeficiente principal es 1, al polinomio se le llama mónico o normalizado.
[editar]Polinomios de varias variables
Los polinomios de varias variables, a diferencia de los de una variable, tienen en totalmás de una variable. Por ejemplo los monomios:

En detalle el último de ellos es un monomio de tres variables (ya que en él aparecen las tres letras x, y y z), el coeficiente es 4, y los exponentes son 1, 2 y 1 de x, y y z respectivamente.
[editar]Grado de un polinomio

Artículo principal: Grado (polinomio).
Se define el grado de un monomio como el mayor exponente de su variable. El grado deun polinomio es el del monomio de mayor grado.
Ejemplos
P(x) = 2, polinomio de grado cero (el polinomio solo consta del término independiente).
P(x) = 3x + 2, polinomio de grado uno.
P(x) = 3x² + 2x², polinomio de grado dos.
P(x) = 2x2+ 3x + 2, polinomio de grado dos.
Convencionalmente se define el grado del polinomio nulo como . En particular los números son polinomios de grado cero.[editar]Operaciones con polinomios

Artículo principal: Operaciones con polinomios.
Los polinomios se pueden sumar y restar agrupando los términos y simplificando los monomios semejantes. Para multiplicar polinomios se multiplica cada término de un polinomio por cada uno de los términos del otro polinomio y luego se simplifican los monomios semejantes.
Ejemplo
Sean los polinomios: y , entonces elproducto es:

Para poder realizar eficazmente la operación se tiene que adquirir los datos necesarios de mayor a menor. Una fórmula analítica que expresa el producto de dos polinomios es la siguiente:

Aplicando esta fórmula al ejemplo anterior se tiene:

Puede comprobarse que para polinomios no nulos se satisface la siguiente relación entre el grado de los polinomios y y el...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • polinomios
  • polinomios
  • Polinomio
  • Polinomios
  • Polinomio
  • Polinomios
  • polinomios
  • polinomios

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS