Polinomios
Un polinomio es una expresión algebraica que se obtiene al expresar cualquier suma de monomios no semejantes.
Si recordamos la suma de monomios, cuando estos no eran semejantes, no se podían sumar. En este caso lo que se obtiene es por tanto un polinomio.
Ejemplo: Son polinomios las expresiones siguientes:
a) 4ax4y3 + x2y + 3ab2y3
b) 4x4 -2x3 + 3x2 - 2x +5
En el primer caso el polinomio consta de la suma de tres monomios, cada uno de ellos es un término del polinomio, luego tiene tres términos., cada uno con varias letras, mientras que en el segundo caso el polinomio tiene 5 términos. Si un término sólo consta de un número se le llama término independiente (5 en el caso b y no existe en el caso a)
Cuando un polinomio consta de dos monomios sedenomina binomio: x2y + 3ab2y3 ; 2x + 3 son dos binomios.
Cuando consta de tres monomios se denomina trinomio: el caso a) anterior o -2x3 + 3x2 + 5 son dos trinomios.
Con más de tres términos (monomios) ya se denomina en general polinomio.
GRADOS DE LOS POLINOMIOS
En álgebra la palabra grado tiene básicamente el mismo significado cuando se refiere a un polinomio o a una ecuación algebraica.Grado de un polinomio
Dado un polinomio P en una cierta variable x, su grado es el máximo de los exponentes de x en los distintos monomios del polinomio. Se suele denotar como gr(P(x)), y se puede omitir la variable si no hay posibilidad de confusión.
Ejemplo:
Respecto al grado de un polinomio, se dice que tiene por grado el mayor de los grados de los monomios que lo forman.
Asíen el caso a) los grados de los monomios (suma de los exponentes de las letras) son 8, 3 y 6, luego el grado del polinomio es 8.
En el caso b) el grado es 4.
Los números que acompañan como factores a las letras (coeficientes de los monomios), se llaman también coeficientes del polinomio: 4 , -2 , 3 , -2 , y 5 respectivamente en el caso b).
" Lo más habitual que nos vamos a encontrar sonpolinomios del tipo del caso b), por tanto con una sola letra, que habitualmente será la x". En este caso a la letra se le suele llamar variable.
Tipos de polinomios
Polinomio nulo
El polinomio nulo tiene todos sus coeficientes nulos.
Polinomio homogéneo
El polinomio homogéneo tiene todos sus términos o monomios con el mismo grado.
P(x) = 2x2 + 3xy
Polinomio heterogéneo
Los términos de unpolinomio heterogéneo son de distinto grado.
P(x) = 2x3 + 3x2 - 3
Polinomio completo
Un polinomio completo tiene todos los términos desde el término independiente hasta el término de mayor grado.
P(x) = 2x3 + 3x2 + 5x - 3
Polinomio ordenado
Un polinomio está ordenado si los monomios que lo forman están escritos de mayor a menor grado.
P(x) = 2x3 + 5x - 3
Tipos de polinomios según su gradoPolinomio de grado cero
P(x) = 2
Polinomio de primer grado
P(x) = 3x + 2
Polinomio de segundo grado
P(x) = 2x2+ 3x + 2
Polinomio de tercer grado
P(x) = x3 - 2x2+ 3x + 2
Polinomio de cuarto grado
P(x) = x4 + x3 - 2x2+ 3x + 2
Tipos de polinomios por el número de términos
Monomio
Es un polinomio que consta de un sólo monomio.
P(x) = 2x2
Binomio
Es un polinomio que consta de dosmonomios.
P(x) = 2x2 + 3x
Trinomio
Es un polinomio que consta de tres monomios.
P(x) = 2x2 + 3x + 5
El valor numérico de un polinomio es el resultado que obtenemos al sustituir la variable x por un número cualquiera.
P(x) = 2x3 + 5x - 3 ; x = 1
P(1) = 2 · 13 + 5 · 1 - 3 = 2 + 5 - 3 = 4
Polinomios iguales
Dos polinomios son iguales si verifican:
1Los dos polinomios tienen el mismo grado.
2Loscoeficientes de los términos del mismo grado son iguales.
P(x) = 2x3 + 5x - 3
Q(x) = 5x - 3 + 2x3
Polinomios semejantes
Dos polinomios son semejantes si verifican que tienen la misma parte literal.
P(x) = 2x3 + 5x − 3
Q(x) = 5x3 − 2x − 7
Suma y resta de polinomios
La suma de polinomios se basa en la de monomios ya vista en este tema. Se podrán sumar los términos (monomios) que sean...
Regístrate para leer el documento completo.