POLINOMIOS

Páginas: 4 (889 palabras) Publicado: 1 de marzo de 2015
En matemáticas, un polinomio (del latín polynomius, y este del griego, πολυς [polys] ‘muchos’ y νόμος [nómos] ‘regla’, ‘prescripción’, ‘distribución’)1 2 3 es una expresión matemática constituidapor un conjunto finito de variables (no determinadas o desconocidas) yconstantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación,así como también exponentes enteros positivos. En términos más precisos, es una relación n-aria de monomios, o una sucesión de sumas y restas de potencias enteras de una o de varias variablesindeterminadas.
Es frecuente el término polinómico (ocasionalmente también el anglicismo polinomial), como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, comopor ejemplo: tiempo polinómico, etc.
SUMA
Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3      Q(x) = 4x − 3x2 + 2x3
1Ordenamos los polinomios,si no lo están.
Q(x) = 2x 3− 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2+ 4x)
2Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3Sumamos los monomiossemejantes.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
También podemos sumar polinomios escribiendo uno debajo del otro, de forma que los monomios semejantes queden en columnas y se puedan sumar.
P(x) =7x4 + 4x2 + 7x + 2       Q(x) = 6x3 + 8x +3

P(x) + Q(x) = 7x4 + 6x3 + 4x2 + 15x + 5


RESTA

EJEMPLO 1: (Resta de polinomios de igual grado)

A = - 3x2 + 9x4 - 8 - 4x3  + 1/2 x 
B = 5x4 - 10 + 3x +7x3

    9x4  - 4x3 - 3x2 + 1/2 x  -  8          (el polinomio A ordenado y completo)

    5x4 + 7x3 + 0x2  +   3x  -  10          (el polinomio B ordenado y completo)
______________________________La resta se puede tranformar en suma, cambiando todos los signos del segundo polinomio:
    9x4  - 4x3 - 3x2 + 1/2 x   -  8

   -5x4 - 7x3 + 0x2   -   3x  +  10       (el polinomio B con los...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • polinomios
  • polinomios
  • Polinomio
  • Polinomios
  • Polinomio
  • Polinomios
  • polinomios
  • polinomios

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS