Politica

Páginas: 36 (8774 palabras) Publicado: 16 de octubre de 2012
OPTIMIZACIÓN EN UNA VARIABLE
(1)

OPTIMIZACIÓN EN UNA VARIABLE
Un problema de optimización consiste en minimizar o maximizar el valor de una variable. En otras palabras se trata de calcular o determinar el valor mínimo o el valor máximo de una función de una variable. Se debe tener presente que la variable que se desea minimizar o maximizar debe ser expresada como función de otra de lasvariables relacionadas en el problema. En ocasiones es preciso considerar las restricciones que se tengan en el problema, ya que éstas generan igualdades entre las variables que permiten la obtención de la función de una variable que se quiere minimizar o maximizar. En este tipo de problemas se debe contestar correctamente las siguientes preguntas: _ ¿Qué se solicita en el problema? _ ¿Quérestricciones aparecen en el problema? La respuesta correcta a la primera pregunta nos lleva a definir la función que deberá ser minimizada o maximizada. La respuesta correcta a la segunda pregunta dará origen a (al menos) una ecuación que será auxiliar para lograr expresar a la función deseada precisamente como una función de una variable.

Ejemplo 10.1.1 Una caja con base cuadrada y parte superiorabierta debe tener un volumen de 50 cm3. Encuentre las dimensiones de la caja que minimicen la cantidad de material que va a ser usado. Slución: La siguiente figura representa la caja:

2

y

y

x x

Volumen de la caja, según la figura: V D x 2 y & V D 50 )

) 50 D x 2 y; esta igualdad relaciona las variables del problema. De esta ecuación podemos obtener y como función de x o viceversa,despejando la variable elegida. El área de la caja sin tapa: A D x 2 C 4xy : Ésta es la cantidad de material que deseamos que sea mínima; vemos que es una función de dos variables. Despejamos y de la restricción dada, esto es, de la fórmula del volumen: yD 50 : x2

Sustituimos en el área y obtenemos una función de una sola variable: A.x/ D x 2 C 4x Derivando: A 0.x/ D 2x 200x
2

50 x2

D x2 C200 D x 2 C 200x x

1

:

D 2x

A 00.x/ D 2 C 200

2 x3

200 2x 3 200 D I x2 x2 400 D 2 C 3 > 0: x

Calculamos puntos críticos: A 0.x/ D 0 ) 2x 3 200 D 0 ) x 3 D 100 ) x D p 3 100 cm :

3

Es un mínimo absoluto pues A 00.x/ > 0 para cualquier x > 0. El valor correspondiente de la otra variable es yD 50 100 3
2

D

1 1 1 100 1p 1 3 D 100 3 D 100 D x cm : 2 2 2 2 2 100 3Ejemplo 10.1.2 Un ranchero tiene 300 m de malla para cercar dos corrales rectangulares iguales y contiguos, es decir, que comparten un lado de la cerca. Determinar las dimensiones de los corrales para que el área cercada sea máxima. H La siguiente figura representa los corrales contiguos:

y

y

y

x

x

Tenemos que el perímetro y el área de los corrales son, respectivamente: P D 4x C3y D 300 2x.300 3 Derivando y obteniendo los puntos críticos: A.x/ D A 0.x/ D 200 y como 16 < 0, entonces se trata de un máximo. 3 75 300 150 El área máxima ocurre para x D m &y D D 50 m, que son las dimensiones pedidas. 2 3 A 00.x/ D Ejemplo 10.1.3 Un terreno tiene la forma de un rectángulo con dos semicírculos en los extremos. Si el perímetro del terreno es de 50 m, encontrar las dimensionesdel terreno para que tenga el área máxima. Pero como y D 300 3 4x : 4x/ D 200x 8 2 x : 3 & A D 2xy :

16 3 200 16 75 xD0 , x D 200 , x D D es el punto crítico 3 3 16 2

H El terreno lo representamos por la siguiente figura:
y

4

2x x

El área del terreno es El perímetro, P D 50 m, está dado por P D 2y C 2 x, por lo que 2y C 2 x D 50 ) y D 50 2 x D 25 2 x: A D 2xy C x 2 :

Su puntocrítico se obtiene cuando A 0 .x/ D 0. Esto es: A 0.x/ D 50x Como A 00.x/ D 2 x2
0

Si sustituimos este valor en la fórmula del área, la tendremos expresada como función de una variable x: A.x/ D 2x.25 x/ C x 2 D 50x C x 2 . 2 / D 50x x2 : 50 25 D : 2 25 D 0, es decir, el

D 50

2 xD0 , xD

área máxima se obtiene cuando el terreno tiene la forma circular. Éste fue un típico problema...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • La Polita Lo Politico
  • Politica y las politicas
  • Politica y Politico
  • La politica y lo politico
  • La política y lo político
  • lo politico y la politica
  • Politica
  • Politica

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS