potencias
Esta forma de expresar este tipo de operaciones es tediosa y poco práctica. Una notación más simple y práctica para expresar el producto de un número por sí mismovarias veces es la notación en forma de potencia.
Una potencia consta de dos partes, por un lado está la base que es el número que se multiplica por sí mismo y por otro el exponente que nos indica el número de veces que se multiplica el número.
Resolución de sistemas de ecuaciones por el método de igualación
1. Se despeja la misma incógnita en ambas ecuaciones.
2. Se igualan las expresiones,con lo que obtenemos una ecuación con una incógnita.
3. Se resuelve la ecuación.
4. El valor obtenido se sustituye en cualquiera de las dos expresiones en las que aparecía despejada la otra incógnita.
5. Los dos valores obtenidos constituyen la solución del sistema.
Ejemplo:
1 Despejamos, por ejemplo, la incógnita x de la primera y segunda ecuación:
2 Igualamos ambas expresiones:3 Resolvemos la ecuación:
4 Sustituimos el valor de y, en una de las dos expresiones en las que tenemosdespejada la x:
5 Solución:
Resolución de sistemas de ecuaciones por el método de sustitución
1. Se despeja una incógnita en una de las ecuaciones.
2. Se sustituye la expresión de esta incógnita en la otra ecuación, obteniendo un ecuación con una sola incógnita.
3. Seresuelve la ecuación.
4. El valor obtenido se sustituye en la ecuación en la que aparecía la incógnita despejada.
5. Los dos valores obtenidos constituyen la solución del sistema.
Ejemplo:
1. Despejamos una de las incógnitas en una de las dos ecuaciones. Elegimos la incógnita que tenga el coeficiente más bajo.
2. Sustituimos en la otra ecuación la variable x, por el valor anterior:
3.Resolvemos la ecuación obtenida:
4. Sustituimos el valor obtenido en la variable despejada.
5. Solución
Resolución de sistemas de ecuaciones por el método de reducción
1. Se preparan las dos ecuaciones, multiplicándolas por los números que convenga.
2. La restamos, y desaparece una de las incógnitas.
3. Se resuelve la ecuación resultante.
4. El valor obtenido se sustituye enuna de las ecuaciones iniciales y se resuelve.
5. Los dos valores obtenidos constituyen la solución del sistema.
Ejemplo:
Lo más fácil es suprimir la y, de este modo no tendríamos que preparar las ecuaciones; pero vamos a optar por suprimir la x, para que veamos mejor el proceso.
Restamos y resolvemos la ecuación:
Sustituimos el valor de y en la segunda ecuación inicial.
Solución:Método gráfico de resolución de sistemas
________________________________________
Cada una de las ecuaciones que forman un sistema lineal de dos ecuaciones con dos incógnitas es la de una función de primer grado, es decir, una recta. El método gráfico para resolver este tipo de sistemas consiste, por tanto, en representar en unos ejes cartesianos, o sistema de coordenadas, ambasrectas y comprobar si se cortan y, si es así, dónde. Esta última afirmación contiene la filosofía del proceso de discusión de un sistema por el método gráfico. Hay que tener en cuenta, que, en el plano, dos rectas sólo pueden tener tres posiciones relativas (entre sí): se cortan en un punto, son paralelas o son coincidentes (la misma recta). Si las dos rectas se cortan en un punto, las coordenadas deéste son el par (x, y) que conforman la única solución del sistema, ya que son los únicos valores de ambas incógnitas que satisfacen las dos ecuaciones del sistema, por lo tanto, el mismo es compatible determinado. Si las dos rectas son paralelas, no tienen ningún punto en común, por lo que no hay ningún par de números que representen a un punto que esté en ambas rectas, es decir, que satisfaga...
Regístrate para leer el documento completo.