Prec Lculo

Páginas: 19 (4594 palabras) Publicado: 12 de junio de 2015
Instituto Politécnico Nacional

U.P.I.I.C.S.A.

I.  Binomio al cuadrado: 
El desarrollo de la suma de dos cantidades cuadrado es igual, al cuadrado del primer término,
más o menos el doble producto del primer término por el segundo, más el cuadrado del
segundo, esta regla general se expresa con la expresión:
(a  b)2 = a2  2ab + b2 
A la expresión resultante se le conoce como:trinomio cuadrado perfecto.
Ejemplo 1: 
Desarrolla el siguiente binomio (3m – 2)2
Se efectúa el desarrollo considerando a 3m como primer término y como segundo término a –2
(3m – 2)2 = (3m)2 – 2(3m)(2) + (2)2
= 9m2 – 12m + 4
Por lo tanto, el resultado es: 9m2 – 12m + 4
Ejemplo 2: 
Efectúa el desarrollo de (4y3 + 7w2)2
Si se considera 4y3 como primer término y como segundo término a 7w2
(4y3 + 7w2)2 = (4y3)2 + 2(4y3)(7w2) + (7w2)2
= 16y6 + 42y3w2 + 49w4
Entonces, el resultado del desarrollo es: 16y6 + 42y3w2 + 49w4
 

Ejercicios: 
Desarrolla los siguientes binomios al cuadrado:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

(x + 2)2
(2x – 1)2
(y + 8)2
(1 – 3m)2
(11m + 7)2
(4m – 3n)2
(x2 + y)2
(5m2 + n2)2
(y3 – 1)2

1

x  
2


Precálculo

2

1

11.

3

 2x  
4

n

  1
6


2

12.

2

13.



x 1



21

  x
x


2

14.
15.

 2
1
 2y 

2y 2







2

Prof.: Miguel Cerón Villegas

Instituto Politécnico Nacional

U.P.I.I.C.S.A.

II.  Binomios conjugados: 

Son de la forma (a + b)(a – b), y su resultado es la diferencia de los cuadrados de ambas
cantidades como se ilustra en la expresión:
 (a + b)(a – b) = a2 – b2 
Ejemplo 1: 

Desarrolla (n – 7)(n + 7)
Aplicando el desarrollo seobtiene:
(n – 7)(n + 7) = (n)2 – (7)2 = n2 – 49
Ejemplo 2: 

Efectúa el desarrollo (4x3 + 11)(4x3 – 11)
Desarrollando:
(4x3 + 11)(4x3 – 11) = (4x3)2 – (11)2 = 16x6 – 121
Ejercicios: 

Desarrolla los siguientes binomios conjugados:
1.

(x – y)(x + y)

2.

(3x + 1)(3x – 1)

3.

(w – 13)(13 + w)

4.

(6y – 1)(1 + 6y)

5.

(7m2 – 4)(7m2 + 4)

6.

(8 + 13m2)(13m2 – 8)

7.

(8 – 5m4)(8 + 5m4)

8.

( n  5)(n  5)

9.

( x  1)( x  1)

10.

(1  2 y )(1  2 y )

11.

(n2 – xy2)(xy2 + n2)

12.

2 
2

 b   b  
5 
5


13.

 2 1  1
2
 6 k     6 k 
k
k




14.



15.

 2 1 3  2 1 3 
 x  y  x  y 
3 
3 


4

Precálculo

x 7



4

x 7



2

Prof.: Miguel Cerón Villegas

Instituto Politécnico Nacional

U.P.I.I.C.S.A.

III. Binomios con término común 
 

Sonde la forma (x + a)(x + b), su resultado es un trinomio cuyo desarrollo es el cuadrado del
término común, más la suma de los términos no comunes por el término común, más el
producto de los no comunes.
(x + a)(x + b) = x2 + (a + b) x + ab 
Ejemplo 1: 

Efectúa (x – 5)(x – 3)
Aplicando la fórmula, se obtiene:
(x – 5)(x – 3) = x2 + (– 5 – 3) x + (– 5)(– 3) = x2 – 8x + 15
Ejemplo 2: 

Desarrolla (3x2+ 4)(3x2 – 11)
Aplicando la fórmula, se obtiene:
(3x2 + 4)(3x2 – 11) = (3x2)2 + (4 – 11)(3x2) + (4)(– 11) = 9x4 – 21x – 44
Desarrollar los siguientes binomios con término común:
1.

(x – 5)(x + 3)

2.

(y + 24)(y – 2)

3.

(m + 12)(m – 3)

4.

(4x + 1)(4x – 7)

5.

(3m + 11)(3m – 10)

6.

(x3 + 7)(5 + x3)

7.

(7n2 – 4)(7n2 – 6)

8.

( y  9)( y  5)

9.

(13 – 2y)(10 – 2y)

10.

w
 w

  8  1
4
4




11.



12.

 3x 2
 3x 2





15
 5
 5  5 




3

Precálculo

m 3



3

m 2



3

Prof.: Miguel Cerón Villegas

Instituto Politécnico Nacional

U.P.I.I.C.S.A.

III. Binomio al cubo 
 

El desarrollo de un binomio (x  y)3, es equivalente a efectuar el producto de (x  y)(x  y)(x  y)
y se obtiene una expresión como:(x  y)3 = x3  3(x)2(y) + 3(x)(y)2  (y)3 
Ejemplo 1: 

Efectúa el desarrollo de (2m – 3n)3
Al realizar el desarrollo, se obtiene:
(2m – 3n)3 = (2m)3 – 3(2m)2(3n) + 3(2m)(3n)2 – (3n)3
(2m – 3n)3 = 8m3 – 36m2n + 54mn2 – 27n3
Ejemplo 2: 

Desarrolla el binomio (5x2 + y3)3
Efectuando el desarrollo se obtiene:
(5x2 + y3)3 = (5x2)3 + 3(5x2)2(y3) + 3(5x2)(y3)2 + (y3)3
(5x2 + y3)3 = 125x6 + 75x4y3 + 15x2y6 + y9
Realiza el desarrollo...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Prec Lculo
  • precos
  • Preca
  • Prec Lculo Haeussleri Padli Wood Cantu
  • Tema 10 Exponenciales Y Logaritmicas Mate B Sicas PreC Lculo 1
  • Tema 7 Relaciones Elipses Mate B Sicas PreC Lculo 1
  • prec administractivo
  • Prec Mbrico

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS