principio de arquimedes

Páginas: 7 (1591 palabras) Publicado: 10 de abril de 2014
El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido desalojado.

La explicación del principio de Arquímedes consta de dos partes como se indica en la figuras:
1.El estudio de las fuerzas sobre una porción de fluido en equilibrio con el resto del fluido.
2.La sustitución de dicha porción de fluido por uncuerpo sólido de la misma forma y dimensiones.

arquimedes_1.gif (4544 bytes)

Porción de fluido en equilibrio con el resto del fluido.
Se sustituye la porción de fluido por un cuerpo sólido de la misma forma y dimensiones.

Si sustituimos la porción de fluido por un cuerpo sólido de la misma forma y dimensiones. Las fuerzas debidas a la presión no cambian, por tanto, su resultante quehemos denominado empuje es la misma y actúa en el mismo punto, denominado centro de empuje.

Lo que cambia es el peso del cuerpo sólido y su punto de aplicación que es el centro de masa, que puede o no coincidir con el centro de empuje.

arquimedes_2.gif (2179 bytes) Por tanto, sobre el cuerpo actúan dos fuerzas: el empuje y el peso del cuerpo, que no tienen en principio el mismo valor ni estánaplicadas en el mismo punto.
En los casos más simples, supondremos que el sólido y el fluido son homogéneos y por tanto, coinciden el centro de masa del cuerpo con el centro de empuje.


Ejemplo:

Supongamos un cuerpo sumergido de densidad ρ rodeado por un fluido de densidad ρf. El área de la base del cuerpo es A y su altura h.



La presión debida al fluido sobre la base superior esp1= ρfgx, y la presión debida al fluido en la base inferior es p2= ρfg(x+h). La presión sobre la superficie lateral es variable y depende de la altura, está comprendida entre p1 y p2.

Las fuerzas debidas a la presión del fluido sobre la superficie lateral se anulan. Las otras fuerzas sobre el cuerpo son las siguientes:

• Peso del cuerpo, mg


• Fuerza debida a la presión sobre la basesuperior, p1·A


• Fuerza debida a la presión sobre la base inferior, p2·A


En el equilibrio tendremos que

mg+p1·A= p2·A
mg+ρfgx·A= ρfg(x+h)·A

o bien,

mg=ρfh·Ag

Como la presión en la cara inferior del cuerpo p2 es mayor que la presión en la cara superior p1, la diferencia es ρfgh. El resultado es una fuerza hacia arriba ρfgh·A sobre el cuerpo debida al fluido que le rodea.

Comovemos, la fuerza de empuje tiene su origen en la diferencia de presión entre la parte superior y la parte inferior del cuerpo sumergido en el fluido.

Con esta explicación surge un problema interesante y debatido. Supongamos que un cuerpo de base plana (cilíndrico o en forma de paralepípedo) cuya densidad es mayor que la del fluido, descansa en el fondo del recipiente.

Si no hay fluidoentre el cuerpo y el fondo del recipiente ¿desaparece la fuerza de empuje?, tal como se muestra en la figura



Si se llena un recipiente con agua y se coloca un cuerpo en el fondo, el cuerpo quedaría en reposo sujeto por su propio peso mg y la fuerza p1A que ejerce la columna de fluido situada por encima del cuerpo, incluso si la densidad del cuerpo fuese menor que la del fluido. La experienciademuestra que el cuerpo flota y llega a la superficie.

El principio de Arquímedes sigue siendo aplicable en todos los casos y se enuncia en muchos textos de Física del siguiente modo:

Cuando un cuerpo está parcialmente o totalmente sumergido en el fluido que le rodea, una fuerza de empuje actúa sobre el cuerpo. Dicha fuerza tiene dirección hacia arriba y su magnitud es igual al peso delfluido que ha sido desalojado por el cuerpo.



Energía potencial mínima.

En este apartado, se estudia el principio de Arquímedes como un ejemplo, de cómo la Naturaleza busca minimizar la energía.



Supongamos un cuerpo en forma de paralepípedo de altura h, sección A y de densidad ρs. El fluido está contenido en un recipiente de sección S hasta una altura b. La densidad del fluido...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Principio de arquimedes
  • Principio de arquimedes
  • Principio de Arquimedes
  • Principio De Arquimedes
  • principio de arquimedes
  • Principio de arquimedes
  • el principio de arquimedes
  • principio de arquimedes

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS