Programacion
Estudio del comportamiento de resistencias en distintos circuitos Autores: Dina Tobia Martín E. Saleta
e-mail: DINA@labs.df.uba.ar y e-mail: dtms@cvtci.com.ar
Profesor: Dr. Salvador Gil (e-mail: sgil@df.uba.ar) T.P.: Lic. Julián Milano
Resumen: A partir de distintas configuraciones tratamos de estudiar la relación entre voltaje y corriente (paralos casos en que esta relación sea lineal es aplicable la Ley de Ohm). Por otro lado estudiamos la importancia de las variaciones térmicas del medio donde están inmersas las resistencias. 1.- Medición de la resistencia interna de una fuente de corriente continua. Para familiarizarnos con el instrumental del laboratorio, se nos propuso armar un circuito simple en el que variamos el voltaje y lacorriente para obtener así la resistencia interna de la fuente. Para realizar los cálculos supusimos que en este caso es aplicable la Ley de Ohm (1). V=I.R Esquema del circuito propuesto
ε = Fuente de corriente continua Ri = Resistencia interna de la fuente R = Década (Resistencia variable) A = Amperímetro V = Voltímetro
(1)
ε i
Ri
A
R (Década)
V
Figura 1
Para variar el voltaje yla corriente fuimos disminuyendo el valor de la resistencia R de 3300 Ohm a 100 Ohm de 100 en 100 y entre 90 Ohm y 30 Ohm lo hicimos de 10 en 10. Para resolver el circuito planteamos la siguiente ecuación: ε = Ri. I + R.I + RA.I (2)
Lab. 3 - UBA - 1999 - Dina Tobia y Martín E. Saleta
1
Se despreció la corriente que circula por la rama del voltímetro. => ε -( Ri + RA).I= R.I=VR (3) Por elmétodo de cuadrados mínimos obtenemos una estimación lineal (4) ε -( Ri + RA).I=VR b+ m x =y
VR e I son medidos por el voltímetro y el amperímetro respectivamente, mientras que los parámetros ε y (Ri + RA) los obtenemos a través del gráfico 1 por el método de cuadrados mínimos. Asumimos que el error en la medición del voltaje es la precisión del instrumento (0.3%+3). El error en la medición de lacorriente es de apreciación (∆I=0.05mA). Luego tenemos los errores característico del método de cuadrados mínimos (los cuales se exponen en el cuadro 1).
Gráfico de V Vs. I para calcular (Ri+RA)
6
5
4
(Ri+RA) = -0.0039 Ohm ∆(Ri+RA) = 0.0003 Ohm ε = 5.066 Volts ∆ε = 0.012 Volts
y = -0.0039x + 5.0662 R2 = 0.9995
Voltaje [V]
3
Vr[Volt] Línea de Tendencia
2
Cuadro 1
1
00 20 40 60 80 100 120 140 160
Corriente [mA]
Gráfico 1: Gráfico para calcular las resistencia internas
Concluimos que, como puede verse en el gráfico hay un comportamiento lineal entre la corriente y el voltaje, verificando la hipótesis de validez de la Ley de Ohm (1) para este caso, y que la ecuación propuesta (2) era adecuada para este modelo. 2.- Ley de Ohm. Estudio de la dependenciade la corriente y la tensión aplicado a: 2.1. Lamparita de linterna 2.2. Resistencia (Década fija) 2.3. Lámpara de Neón Estudiamos la relación entre el voltaje y la corriente que circulan por diferentes resistencias para ver si es aplicable la ley de Ohm en cada caso.
Lab. 3 - UBA - 1999 - Dina Tobia y Martín E. Saleta
2
2.1. Lamparita de linterna. Se monto el siguiente dispositivo:
O.OOFuente Volt.
Divisor de Voltaje
O.OO Amp.
Figura 2.1.1.
Para variar el voltaje y la corriente utilizamos un divisor de voltaje. Consideramos despreciable la corriente que circula por la rama del voltímetro.
Esquema del circuito propuesto en la Figura 2.1.1.
ε = Fuente de tensión continua. IT = Corriente entregada por la fuente. Vx = Voltaje variable (del divisor). A = AmperímetroV = Voltímetro I = Corriente que circula por la lamparita.
ε iT Vx
A
Lámpara
V
i
Figura 2.1.2.
Medimos V e I con un voltímetro y un amperímetro respectivamente. El error en la medición del voltaje es la precisión del instrumento (0.3%+3), mientras que el error en la corriente es de apreciación (∆I=0.05mA).
Lab. 3 - UBA - 1999 - Dina Tobia y Martín E. Saleta
3
Las...
Regístrate para leer el documento completo.