Rebeldes

Páginas: 15 (3658 palabras) Publicado: 20 de noviembre de 2012
Función lineal
En geometría y el álgebra elemental, una función lineal es una función polinómica de primer grado; es decir, una función cuya representación en el plano cartesiano es una línea recta. Esta función se puede escribir como:

donde m y b son constantes reales y x es una variable real. La constante m es la pendiente de la recta, y b es el punto de corte de la recta con el eje y. Sise modifica m entonces se modifica la inclinación de la recta, y si se modifica b, entonces la línea se desplazará hacia arriba o hacia abajo.
Algunos autores llaman función lineal a aquella con b= 0 de la forma:

mientras que llaman función afín a la que tiene la forma:

cuando b es distinto de cero.
Ejemplo

Una función lineal de una única variable dependiente x es de la forma:

que seconoce como ecuación de la recta en el plano xy.
En la figura se ven dos rectas, que corresponden a las ecuaciones lineales siguientes:

en esta recta el parámetro m= 1/2 por tanto de pendiente 1/2, es decir, cuando aumentamos x en una unidad entonces y aumenta en 1/2 unidad, el valor de b es 2, luego la recta corta el eje y en el punto y= 2.
En la ecuación:

la pendiente de la recta es elparámetro m= -1, es decir, cuando el valor de x aumenta en una unidad, el valor de y disminuye en una unidad; el corte con el eje y es en y= 5, dado que el valor de b= 5.
Utilidad
Se puede aplicar en muchas situaciones, por ejemplo en economía (uso de la oferta y la demanda) los ecónomos se basan en la linealidad de esta función y las leyes de la oferta y la demanda son dos de las relacionesfundamentales en cualquier análisis económico. Por ejemplo, si un consumidor desea adquirir cualquier producto, este depende del precio en que el artículo esté disponible. Una relación que especifique la cantidad de un artículo determinado que los consumidores estén dispuestos a comprar, a varios niveles de precios, se denomina ley de demanda. La ley más simple es una relación del tipo P= mx + b,donde P es el precio por unidad del artículo y m y b son constantes.
Muchas son las aplicaciones de la función lineal en el caso de la medicina. Ciertas situaciones requieren del uso de ecuaciones lineales para el entendimiento de ciertos fenómenos. Un ejemplo es el resultado del experimento psicológico de Stenberg, sobre recuperación de información.
Esta dada por la formula y=mx+b donde m y b sonnúmeros reales llamados pendiente y ordenada al origen respectivamente. Su gráfica es una recta.
Dada la ecuación y=mx+b:
Si m=0, entonces y=b. Es decir, se obtiene la función constante, cuya gráfica es una recta paralela al eje x que pasa por el punto (0,b).
Si b=0, entonces y=mx. Esta ecuación tiene por gráfica una recta que pasa por el origen de coordenadas (0,0).
Función Cuadrática
Enmatemáticas, una función cuadrática o función de segundo grado es una función polinómica definida como:

Gráficas de funciones cuadráticas.

en donde a, b y c son números reales (constantes) y a es distinto de 0.
La representación gráfica en el plano cartesiano de una función cuadrática es una parábola, cuyo eje de simetría es paralelo al eje de las ordenadas. La parábola se abrirá hacia arriba siel signo de a es positivo, y hacia abajo en caso contrario. El estudio de las funciones cuadráticas tiene numerosas aplicaciones en campos muy diversos, como por ejemplo la caída libre o el tiro parabólico.
La derivada de una función cuadrática es una función lineal y su integral una función cúbica.

Utilidad
El estudio de las funciones cuadráticas resulta de interés no sólo en matemática sinotambién en física y en otras áreas del conocimiento como por ejemplo: la trayectoria de una pelota lanzada al aire, la trayectoria que describe un río al caer desde lo alto de una montaña, la forma que toma una cuerda floja sobre la cual se desplaza un equilibrista, el recorrido desde el origen, con respecto al tiempo transcurrido, cuando una partícula es lanzada con una velocidad inicial....
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Rebelde
  • Rebeldes
  • REBELDE
  • Rebeldes
  • Rebeldes
  • Rebeldes
  • Rebelde
  • rebeldes

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS