Reglamento Interno Ese
MATRICES Y DETERMINANTES
[pic]Concepto de matriz: Se denomina matriz a todo conjunto de
Números o expresiones dispuestas en forma rectangular, formando
Filas y columnas.[pic]
Cada uno de los números de que consta la matriz se denomina elemento. Un elemento se distingue de otro por la posición que ocupa, es decir, la fila y la columna a la que pertenece.
Elnúmero de filas y columnas de una matriz se denomina dimensión de una matriz. Así, una matriz será de dimensión: 2x4, 3x2, 2x5,... Sí la matriz tiene el mismo número de filas que de columna, se dice que esde orden: 2, 3, ...
El conjunto de matrices de m filas y n columnas se denota por Amxn o (aij), y un elemento cualquiera de la misma, que se encuentra en la fila i y en la columna j, por aij.Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas, son iguales.
Dadas dos matrices de la misma dimensión, A=(aij) y B=(bij), sedefine la matriz suma como: A+B=(aij+bij). Es decir, aquella matriz
cuyos elementos se obtienen: sumando los elementos de las dos
matrices que ocupan la misma posición
Propiedades de la sumade matrices
Interna: La suma de dos matrices de orden m x n es otra matriz dimensión m x n.
Asociativa: A + (B + C) = (A + B) + C
Elemento neutro: A + 0 = A
Donde O es la matriznula de la misma dimensión que la matriz A.
Elemento opuesto: A + (-A) = O
La matriz opuesta es aquella en que todos los elementos están cambiados de signo.
Conmutativa: A + B = B + AProducto de un escalar por una matriz
Dada una matriz A = (aij) y un número real k [pic]R, se define el producto de un número real por una matriz: a la matriz del mismo orden que A, en laque cada elemento está multiplicado por k.
k · A=(k aij)
[pic]
Propiedades
a · (b · A) = (a · b) · A A[pic] Mmxn, a, b [pic][pic]
a · (A + B) = a · A + a ·...
Regístrate para leer el documento completo.