Regresion lineal
Inversión (X) | 11 | 14 | 16 | 15 | 16 | 18 | 20 | 21 | 14 | 20 | 19 | 11 |
Rendimiento (Y) | 2 | 3 | 5 | 6 | 5 | 3 | 7 | 10 | 6 | 10 | 5 | 6 |
Calcularel modelo de regresión lineal y anova del rendimiento respecto de la inversión.
OBS. | INVERSION (x) | RENDIMIENTO (y) | X2 | XY | i=1n(yi-y)2 |
1 | 11 | 2 | 121 | 22 | 13.44444 |
2 | 14 |3 | 196 | 42 | 7.111111 |
3 | 16 | 5 | 256 | 80 | 0.444444 |
4 | 15 | 6 | 225 | 90 | 0.111111 |
5 | 16 | 5 | 256 | 80 | 0.444444 |
6 | 18 | 3 | 324 | 54 | 7.111111 |
7 | 20 | 7 | 400 |140 | 1.777778 |
8 | 21 | 10 | 441 | 210 | 18.77778 |
9 | 14 | 6 | 196 | 84 | 0.111111 |
10 | 20 | 10 | 400 | 200 | 18.77778 |
11 | 19 | 5 | 361 | 95 | 0.444444 |
12 | 11 | 6 | 121 |66 | 0.111111 |
Σ | 195 | 68 | 3297 | 1163 | 68.66667 |
Promedio | 16.25 | 5.666666667 | | | |
Calculos:
=i=1nxi yi - i=1nxi i=1nyin i=1nxi 2- (i=1nxi)2n
=1163-195×68123297-195212=58128.25=0.45
=y- x=5.667-0.4516.25=-1.645
Sxy= 58 Sxx=128.25
= + x
= -1.645 + 0.45x MODELO DE REGRESION
ei=yi-i
e1 =2-3.305= -1.305
e2 = 3 – 4.655 = -1.655e3 = 5 – 5.55 = -0.555
e4 = 6 – 5.105 = 0.895
Para x =25, x=30, x=35, x=40, x=45
Con = -1.645 + 0.45x Tenemos que:
= -1.645 + (0.45)25 = 9.605
= -1.645 + (0.45)30 = 11.855
= -1.645 +(0.45)35 = 14.105
= -1.645 + (0.45)40 = 16.355
= -1.645 + (0.45)45 = 18.605
Análisis de Varianza:
FV Fuente de Variación | SS Suma de Cuadrados | GL Grados de Libertad | MS Suma de Cuadrados Medios | fo|
Regresión | SSR | 1 | SSR /1 | SSR /1 SSE / n-1 |
Error | SSE | n-2 | SSE / n-2 | |
Total | SSYY | n-1 | | |
SSyy= SSR+ SSE
SSyy= i=1n(yi-y)2
SSyy = 68.667
SSR=...
Regístrate para leer el documento completo.