Regresion y correlacion
La regresión y la correlación son dos técnicas estrechamente relacionadas y comprenden una forma de estimación.
En forma más especifica el análisis de correlación y regresión comprende el análisis de los datos muéstrales para saber qué es y cómo se relacionan entre sí dos o más variables en una población. El análisis de correlación produce un número queresume el grado de la correlación entre dos variables; y el análisis de regresión da lugar a una ecuación matemática que describe dicha relación.
El análisis de correlación generalmente resulta útil para un trabajo de exploración cuando un investigador o analista trata de determinar que variables son potenciales importantes, el interés radica básicamente en la fuerza de la relación. Lacorrelación mide la fuerza de una entre variables; la regresión da lugar a una ecuación que describe dicha relación en términos matemáticos
Análisis de la regresión
La regresión estadística o regresión a la media es la tendencia de una medición extrema a presentarse más cercana a la media en una segunda medición. La regresión se utiliza para predecir una medida basándonos en el conocimiento de otra.Modelos de regresión
Regresión lineal
• Regresión lineal simple
Dadas dos variables (Y: variable dependiente; X: independiente) se trata de encontrar una función simple (lineal) de X que nos permita aproximar Y mediante: Ŷ = a + bX
a (ordenada en el origen, constante)
b (pendiente de la recta)
A la cantidad e=Y-Ŷ se le denomina residuo o error residual.
Así, en elejemplo de Pearson: Ŷ = 85 cm + 0,5X
Donde Ŷ es la altura predicha del hijo y X la altura del padre: En media, el hijo gana 0,5 cm por cada cm del padre.
Regresión lineal
[pic]
[pic]
Ejemplo de una regresión lineal con una variable dependiente y una variable independiente.
En estadística la regresión lineal o ajuste lineal es un método matemático que modeliza la relaciónentre una variable dependiente Y, las variables independientes Xi y un término aleatorio ε. Este modelo puede ser expresado como:
[pic]
Donde β0 es la intersección o término "constante", las [pic]son los parámetros respectivos a cada variable independiente, y p es el número de parámetros independientes a tener en cuenta en la regresión. La regresión lineal puede ser contrastada con laregresión no lineal
El modelo de regresión lineal
El modelo lineal relaciona la variable dependiente Y con K variables explicativas Xk (k = 1,...K), o cualquier transformación de éstas, que generan un hiperplano de parámetros βk desconocidos:
(2) [pic]
Donde [pic]es la perturbación aleatoria que recoge todos aquellos factores de la realidad no controlables u observables y que por tantose asocian con el azar, y es la que confiere al modelo su carácter estocástico. En el caso más sencillo, con una sola variable explicativa, el hiperplano es una recta:
(3) [pic]
El problema de la regresión consiste en elegir unos valores determinados para los parámetros desconocidos βk, de modo que la ecuación quede completamente especificada. Para ello se necesita un conjunto deobservaciones. En una observación cualquiera i-ésima (i= 1,... I) se registra el comportamiento simultáneo de la variable dependiente y las variables explicativas (las perturbaciones aleatorias se suponen no observables).
(4) [pic]
Los valores escogidos como estimadores de los parámetros, [pic], son los coeficientes de regresión, sin que se pueda garantizar que coinciden con parámetros reales delproceso generador. Por tanto, en
(5) [pic]
Los valores [pic]son por su parte estimaciones de la perturbación aleatoria o errores.
Supuestos del modelo de regresión lineal
Para poder crear un modelo de regresión lineal, es necesario que se cumpla con los siguientes supuestos:[]
1. La relación entre las variables es lineal.
2. Los errores en la medición de las variables...
Regístrate para leer el documento completo.