sadj
road
Guía Matemática
´
CUADRILATEROS
tutora: Jacky Moreno
.cl
open green
road
1.
Pol´ıgonos
Epistemol´ogicamente, la palabra pol´ıgono significa “muchos ´angulos”. Los pol´ıgonos son figuras cerradas planas que est´
an formadas por la uni´on de segmentos rectos que tienen distinta direcci´on. Al ser
figuras cerradas el contorno del pol´ıgono delimita dosregiones del plano: el ´area interior que corresponde
al espacio que queda encerrado dentro de las l´ıneas poligonales y el ´area exterior que queda fuera de estas
l´ıneas, tal como lo muestra la figura.
Como dijimos, los pol´ıgonos se caracterizan por tener m´
ultiples ´angulos, en base a la medida que
tengan sus ´angulos interiores los podemos clasificar en c´oncavos o convexos.
Pol´ıgonos C´oncavos: Corresponden a aquellos pol´ıgonos en que alg´
un ´angulo interior es mayor
que 180°. Tambi´en se pueden identificar como aquellas figuras en las que al trazar un segmento
determinado por dos puntos de la regi´on interior del pol´ıgono, este segmento posee al menos un
punto que est´
a en la regi´
on exterior.
Pol´ıgonos Convexos: Corresponden a aquellos pol´ıgonos en que todossus ´angulos interiores son
menores que 180°. Tambi´en se pueden identificar como aquellas figuras en las que al trazar un
segmento determinado por dos puntos de la regi´on interior de pol´ıgono, este segmento tiene todos
sus puntos en la regi´
on interior.
2
open green
road
De acuerdo al n´
umero de lados los pol´ıgonos los podemos clasificar como se muestran a continuaci´
on:
N´umero de lados
3
4
5
6
7
8
9
10
11
12
13
14
15
20
1.1.
Nombre
Tri´angulo
Cuadril´atero
Pent´agono
Hex´agono
Hept´agono
Oct´agono u oct´ogono
Non´agono o Ene´agono
Dec´agono
Endec´agono
Dodec´agono
Tridec´agono
Tetradec´agono
Pentadec´agono
Icos´agono
Propiedades de los pol´ıgonos
En todo pol´ıgono de n lados se cumplen las siguientes propiedades:
La sumade los ´
angulos interiores es igual a 180° · (n − 2).
La suma de los ´
angulos exteriores es igual a 360°.
El n´
umero de diagonales que se pueden dibujar desde un v´ertice es de (n − 3).
El n´
umero total de diagonales que es posible trazar es
3
n · (n − 3)
.
2
open green
road
✍ Ejercicios
1
Resolver los siguientes ejercicios.
1. Si el n´
umero de diagonales que sepueden trazar en un pol´ıgono es 14, ¿cu´antos lados tiene el
pol´ıgono?
2. Si la suma de los ´
angulos interiores de un pol´ıgono es igual a 1260°, ¿cu´antos lados tiene el pol´ıgono?
3. ¿Cu´antas diagonales son posible trazar en un pol´ıgono de 12 lados?
4. Si el n´
umero de diagonales que se pueden trazar desde el v´ertice de un pol´ıgono son 7, ¿cu´
anto
suman las medidas de los ´angulos interiores del pol´ıgono?
5. Si la suma de los ´
angulos interiores de un pol´ıgono es igual a 720°, ¿cu´antas diagonales es posible
trazar en su interior?
1.2.
Pol´ıgonos regulares
Los pol´ıgonos regulares corresponden aquellas figuras que tienen todos sus lados congruentes, como
tambi´en todos sus ´
angulos interiores. De lo contrario, se denominan pol´ıgonos irregulares.1.2.1.
Propiedad de los pol´ıgonos regulares
En todo pol´ıgono regular de n lados se cumplen las siguientes propiedades:
La medida de cada ´
angulo interior es de
180° · (n − 2)
.
n
La medida de cada ´
angulo exterior es de
360°
.
n
Se pueden inscribir y circunscribir una circunferencia.
Se pueden dividir en n tri´
angulos congruentes.
4
open green
road
✍Ejercicios
2
Resolver los siguientes ejercicios.
1. ¿Cu´anto mide cada ´
angulo interior de un tetradec´agono regular?
2. Si el ´angulo interior de un pol´ıgono regular mide 135°, ¿cu´antos lados tiene el pol´ıgono?
3. Si el ´angulo exterior de un pol´ıgono regular mide 60°, ¿cu´antas diagonales se pueden trazar en el
pol´ıgono?
4. ¿Cu´anto mide cada ´
angulo exterior de un pent´agono...
Regístrate para leer el documento completo.