Segunda Ley De Newton
SEGUNDA LEY DE NEWTON
PROFESOR. JOSE FRANCISCO NIETO CONTRERAS
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
SAN JOSE DE CUCUTA
2012
INTRODUCCION
En este informe es encuentra el desarrollo de la practica # 9 relacionada con la segunda ley de newton, el cual se realizo el día miércoles 5 de diciembre, en el cual se tomaron los datos de los equipos según el montaje que la guíade laboratorio mostraba.
OBJETIVO GENERAL
Comprobar con la ley segunda de newton, la relación entre la masa, aceleración y la fuerza de una masa en movimiento.
OBJETIVOS ESPECIFICOS
* Determinar que la aceleración es directamente proporcional a la fuerza neta aplicada.
* Determinar que la aceleración es inversamente proporcional a la masa
* Determinar la relación entre ladistancia recorrida y el tiempo.
MARCO TEORICO
Segunda ley de Newton o Ley de fuerza
el cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estadode movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y efecto, esto es, la fuerza y la aceleración estánrelacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.
En términos matemáticos esta ley se expresa mediante la relación:
Donde es la cantidad de movimiento y la fuerza total. Bajo la hipótesis de constancia de la masa y pequeñasvelocidades, puede reescribirse más sencillamente como:
que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad distinta para cada cuerpo es su masa de inercia , pues las fuerzas ejercidas sobre un cuerpo sirven para vencer su inercia, con lo que masa e inercia se identifican. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo. Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que ladinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.
De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza tambiénvaldrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.
La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos demovimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).
Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con un resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la...
Regístrate para leer el documento completo.