Serie Y Sucesiones Y Coordenadas Polares
MINISTERIO DEL PODER POPULAR PARA LA EDUCACION
INSTITUO UNIVERSITARIO DE TECNOLOGIA
ANTONIO JOSE DE SUCRE
AMPLIACION GUARENAS
ESCUELA: INFORMATICA
PROF.: ROXANA TOVAR
AUTORA: YURKARLIS MOYA
GUARENAS, JULIO DE 2015
Las coordenadas polares o sistemas polares son un sistema de coordenadas bidimensional en el cual cada punto del plano se determinapor una distancia y un ángulo, ampliamente utilizados en física y trigonometría.
De manera más precisa, se toman: un punto O del plano, al que se le llama origen o polo, y una recta dirigida (o rayo, o segmento OL) que pasa por O, llamada eje polar (equivalente al eje x del sistema cartesiano), como sistema de referencia. Con este sistema de referencia y una unidad de medida métrica (para poderasignar distancias entre cada par de puntos del plano), todo punto P del plano corresponde a un par ordenado (r, θ) donde r es la distancia de P al origen y θ es el ángulo formado entre el eje polar y la recta dirigida OP que va de O a P. El valor θ crece en sentido anti horario y decrece en sentido horario. La distancia r (r ≥ 0) se conoce como la «coordenada radial» o «radio vector», mientras queel ángulo es la «coordenada angular» o «ángulo polar».
En el caso del origen, O, el valor de r es cero, pero el valor de θ es indefinido. En ocasiones se adopta la convención de representar el origen por (0,0º).
Las sucesiones: Una sucesión es un conjunto de cosas (normalmente números) una detrás de otra, en un cierto orden.
Es un conjunto ordenado de objetos matemáticos, generalmente números.Cada uno de ellos es denominado término (también elemento o miembro) de la sucesión y al número de elementos ordenados (posiblemente infinitos) se le denomina la longitud de la sucesión. No debe confundirse con una serie matemática, que es la suma de los términos de una sucesión.
A diferencia de un conjunto, el orden en que aparecen los términos sí es relevante y un mismo término puede aparecer enmás de una posición. De manera formal, una sucesión puede definirse como una función sobre el conjunto de los números naturales (o un subconjunto del mismo) y es por tanto una función discreta.
Ejemplo
La sucesión (A, B, C) es una sucesión de letras que difiere de la sucesión (C, A, B). En este caso se habla de sucesiones finitas (de longitud igual a 3). Un ejemplo de sucesión infinita sería lasucesión de números positivos pares: 2, 4, 6, 8,...
En ocasiones se identifica a las sucesiones finitas con palabras sobre un conjunto. Puede considerarse también el caso de una sucesión vacía (sin elementos), pero este caso puede excluirse dependiendo del contexto.
Tipos de sucesiones
Sucesiones aritméticas
El ejemplo que acabamos de usar, {3, 5, 7, 9,...}, es una sucesión aritmética (oprogresión aritmética), porque la diferencia entre un término y el siguiente es una constante.
Ejemplos
1, 4, 7, 10, 13, 16, 19, 22, 25, ...
Esta sucesión tiene una diferencia de 3 entre cada dos términos.
La regla es xn = 3n-2
3, 8, 13, 18, 23, 28, 33, 38, ...
Esta sucesión tiene una diferencia de 5 entre cada dos términos.
La regla es xn = 5n-2
Sucesiones geométricas
En una sucesión geométrica cadatérmino se calcula multiplicando el anterior por un número fijo.
Ejemplos:
2, 4, 8, 16, 32, 64, 128, 256, ...
Esta sucesión tiene un factor 2 entre cada dos términos.
La regla es xn = 2n
3, 9, 27, 81, 243, 729, 2187, ...
Esta sucesión tiene un factor 3 entre cada dos términos.
La regla es xn = 3n
4, 2, 1, 0.5, 0.25, ...
Esta sucesión tiene un factor 0.5 (un medio) entre cada dos términos.
Laregla es xn = 4 × 2-n
Sucesiones especiales
Números triangulares
1, 3, 6, 10, 15, 21, 28, 36, 45, ...
Esta sucesión se genera a partir de una pauta de puntos en un triángulo.
Añadiendo otra fila de puntos y contando el total encontramos el siguiente número de la sucesión.
Pero es más fácil usar la regla
xn = n(n+1)/2
Ejemplo:
El quinto número triangular es x5 = 5(5+1)/2 = 15,
y el sexto es...
Regístrate para leer el documento completo.