Sistema De Dos Ecuacion Con Dos Incognitas
Método de sustitución
1 Se despeja una incógnita en una de las ecuaciones.
2 Se sustituye la expresión de esta incógnita en la otra ecuación,obteniendo un ecuación con una sola incógnita.
3 Se resuelve la ecuación.
4 El valor obtenido se sustituye en la ecuación en la que aparecía la incógnita despejada.
5 Los dos valores obtenidos constituyenla solución del sistema.
Ejemplo
1Despejamos una de las incógnitas en una de las dos ecuaciones. Elegimos la incógnita que tenga el coeficiente más bajo.
2Sustituimos en la otra ecuación lavariable x, por el valor anterior:
3Resolvemos la ecuación obtenida:
4 Sustituimos el valor obtenido en la variable despejada.
5 Solución
Método de igualación
1 Se despeja la mismaincógnita en ambas ecuaciones.
2 Se igualan las expresiones, con lo que obtenemos una ecuación con una incógnita.
3 Se resuelve la ecuación.
4 El valor obtenido se sustituye en cualquiera de las dosexpresiones en las que aparecía despejada la otra incógnita.
5 Los dos valores obtenidos constituyen la solución del sistema.
Ejemplo
1 Despejamos, por ejemplo, la incógnita x de la primera y segundaecuación:
2 Igualamos ambas expresiones:
3 Resolvemos la ecuación:
4 Sustituimos el valor de y, en una de las dos expresiones en las que tenemos despejada la x:
5 Solución:
Método dereducción
1 Se preparan las dos ecuaciones, multiplicándolas por los números que convenga.
2 La restamos, y desaparece una de las incógnitas.
3 Se resuelve la ecuación resultante.
4 El valor obtenidose sustituye en una de las ecuaciones iniciales y se resuelve.
5 Los dos valores obtenidos constituyen la solución del sistema.
Ejemplo
Lo más fácil es suprimir la y, de este modo no tendríamosque preparar las ecuaciones; pero vamos a optar por suprimir la x, para que veamos mejor el proceso.
Restamos y resolvemos la ecuación:
Sustituimos el valor de y en la segunda ecuación...
Regístrate para leer el documento completo.