SISTEMA DE ECUACIONES LINEALES YEDANI ZAPATA LOPEZ

Páginas: 5 (1241 palabras) Publicado: 1 de octubre de 2015


UNIVERSIDAD DEL DESARROLLO PROFESIONAL

CAMPUS COATZACOALCOS

LICENCIATURA EN COMERCIO INTERNACIONAL

MATEMATICAS

3. SISTEMA DE ECUACIONES LINEALES
3.1EL METODO GRAFICO
3.2 EL METODO DE SUMA Y RESTA
3.3 LOS METODOS DE SISTITUCION

QUE PRESENTA
ZAPATA LOPEZ YEDANI
1 ER. CUATRIMESTRE
DOCENTE
ING.JORGE ALBERTO SIERRA CASTRO

02/OCT./2015





Sistema de ecuaciones linealesEn matemáticas y álgebra lineal, un sistema de ecuaciones lineales, también conocido como sistema lineal de ecuaciones o simplemente sistema lineal, es un conjunto de ecuaciones lineales (es decir, un sistema de ecuaciones en donde cada ecuación es de primer grado), definidas sobre un cuerpo o un anillo conmutativo. Un ejemplo de sistema lineal de ecuaciones sería el siguiente:

El problema consiste en encontrar losvalores desconocidos de las variables x1, x2 y x3 que satisfacen las tres ecuaciones.
El problema de los sistemas lineales de ecuaciones es uno de los más antiguos de la matemática y tiene una infinidad de aplicaciones, como en procesamiento digital de señales, análisis estructural, estimación, predicción y más generalmente en programación lineal así como en la aproximación de problemas no linealesde análisis numérico.

El METODO GRAFICO

Cada una de las ecuaciones que forman un sistema lineal de dos ecuaciones con dos incógnitas es la de una función de primer grado, es decir, una recta. El método gráfico para resolver este tipo de sistemas consiste, por tanto, en representar en unos ejes cartesianos, o sistema de coordenadas, ambas rectas y comprobar si se cortan y, si es así, dónde. Estaúltima afirmación contiene la filosofía del proceso de discusión de un sistema por el método gráfico. Hay que tener en cuenta, que, en el plano, dos rectas sólo pueden tener tres posiciones relativas (entre sí): se cortan en un punto, son paralelas o son coincidentes (la misma recta). Si las dos rectas se cortan en un punto, las coordenadas de éste son el par (x, y) que conforman la única solución delsistema, ya que son los únicos valores de ambas incógnitas que satisfacen las dos ecuaciones del sistema, por lo tanto, el mismo es compatible determinado. Si las dos rectas son paralelas, no tienen ningún punto en común, por lo que no hay ningún par de números que representen a un punto que esté en ambas rectas, es decir, que satisfaga las dos ecuaciones del sistema a la vez, por lo que ésteserá incompatible, o sea sin solución. Por último, si ambas rectas son coincidentes, hay infinitos puntos que pertenecen a ambas, lo cual nos indica que hay infinitas soluciones del sistema (todos los puntos de las rectas), luego éste será compatible indeterminado.
El proceso de resolución de un sistema de ecuaciones mediante el método gráfico se resume en las siguientes fases:
i. Se despeja laincógnita y en ambas ecuaciones.
ii. Se construye, para cada una de las dos funciones de primer grado obtenidas, la tabla de valores correspondientes.
iii. Se representan gráficamente ambas rectas en los ejes coordenados.
iv. En este último paso hay tres posibilidades:
a. Si ambas rectas se cortan, las coordenadas del punto de corte son los únicos valores de las incógnitas x e y. Sistema compatibledeterminado.
b. Si ambas rectas son coincidentes, el sistema tiene infinitas soluciones que son las respectivas coordenadas de todos los puntos de esa recta en la que coinciden ambas. Sistema compatible indeterminado.
c. Si ambas rectas son paralelas, el sistema no tiene solución. Sistema incompatible.
Veamos, por última vez, el ejemplo visto en los métodos analíticos para resolverlo gráficamente ycomprobar que tiene, se use el método que se use, la misma solución. recordemos de nuevo el enunciado:
Entre Ana y Sergio tienen 600 euros, pero Sergio tiene el doble de euros que Ana. ¿Cuánto dinero tiene cada uno?.
Llamemos x al número de euros de Ana e y al de Sergio. Vamos a expresar las condiciones del problema mediante ecuaciones: Si los dos tienen 600 euros, esto nos proporciona la...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Ecuaciones Lineales Y Sistemas De Ecuaciones
  • Sistema de ecuaciones lineales (algebra lineal)
  • SISTEMA DE ECUACIONES LINEALES DE 3 ECUACIONES Y
  • Historia De Los Sistemas De Ecuaciones Lineales
  • Sistema De Ecuaciones Lineales
  • Sistemas De Ecuaciones Lineales
  • Sistema de Ecuaciones Lineales y Matrices
  • Sistemas de ecuaciones lineales

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS