SISTEMAS DE NUMERACION

Páginas: 5 (1236 palabras) Publicado: 9 de julio de 2015
SISTEMAS DE NUMERACIÓN
binario, octal y hexadecimal
Sistema de numeración binario.
El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puedeobservar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:
1*23 + 0*22 + 1*21 + 1*20 , es decir:
8 + 0 + 2 + 1 = 11
y para expresar que ambas cifras describen la misma cantidad lo escribimos así:
10112 =1110
 Conversión entre números decimales y binarios
Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.
Por ejemplo, para convertir al sistema binario el número 7710 haremos una serie de divisiones que arrojarán los restos siguientes:
77 : 2 =38 Resto: 1
38 : 2 = 19 Resto: 0
19 : 2 = 9 Resto: 1
9 : 2 = 4 Resto: 1
4 : 2 = 2 Resto: 0
2 : 2 = 1 Resto: 0
1 : 2 = 0 Resto: 1
y, tomando los restos en orden inverso obtenemos la cifra binaria:
7710 = 10011012
 Conversión de binario a decimal
El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valorde cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda.
Por ejemplo, para convertir el número binario 10100112 a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:
1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 83
10100112 = 8310 Sistema de numeración octal
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.
En el sistema de numeración octal, losnúmeros se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
Por ejemplo, el número octal 2738 tiene un valor que se calcula así:
2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610
2738 = 149610 Conversión de un número decimal a octal
La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso. Por ejemplo, para escribir en octal el número decimal 12210 tendremos que hacer las siguientes divisiones:
122 : 8 = 15     Resto: 2
15 : 8 = 1          Resto: 7
1 : 8 = 0               Resto: 1
Tomando los restos obtenidos en orden inverso tendremos la cifra octal:
12210 = 1728
 Conversión octal a decimal
La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal. Por ejemplo, para convertir el número 2378 a decimal basta con desarrollar el valor de cada dígito:
2*82 + 3*81 + 7*80 =128 + 24 + 7 = 15910
2378 = 15910
 Sistema de numeración hexadecimal
En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Sistemas De Numeración
  • Sistemas De Numeracion
  • Sistemas de numeración
  • Sistemas de numeracion
  • Sistemas De Numeracion
  • Sistema de numeración
  • Sistemas De Numeracion
  • Sistemas de numeración

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS