tarea
Para lograr esa comprensión es necesario adentrarnos en la noción de Correspondencia, ya que esta tiene unpapel fundamental en las relaciones y funciones.
Lo primero es entender que Correspondencia es equivalente a Relación. En nuestra lengua, decir “en relación a”, es equivalente a decir “corresponde a”.Ejemplos:
En una tienda comercial, cada artículo está relacionado con su precio; o sea, a cada artículo le corresponde un precio.
En la guía telefónica, cada cliente está relacionado con unnúmero; o sea, a cada nombre de la guía le corresponde un número.
Definición matemática de Relación y de Función
En matemática, Relación es la correspondencia de un primer conjunto, llamadoDominio, con un segundo conjunto, llamado Recorrido o Rango, de manera que a cada elemento del Dominio le corresponde uno o más elementos del Recorrido o Rango.
Por su parte, una Función es una relacióna la cual se añade la condición de que a cada valor del Dominio le corresponde uno y sólo un valor del Recorrido.
De las definiciones anteriores podemos deducir que todas las funciones sonrelaciones, pero no todas las relaciones son funciones.
También debemos agregar que toda ecuación es una Relación, pero no toda ecuación es una Función.
Todas las Relaciones pueden ser graficadas en elPlano Cartesiano.
Ver: Plano Cartesiano
Dados dos conjuntos A y B una relación definida de A en B es un conjunto de parejas ordenadas (par ordenado) que hacen verdadera una proposición; dichode otro modo, una relación es cualquier subconjunto del producto cartesiano A x B
Ejemplo 1.
Si A = {2, 3} y B = {1, 4, 5}, encontrar tres relaciones definidas de A en B.
Solución
Elproducto cartesiano de A x B está conformado por las siguientes parejas o pares ordenados:
A x B = {(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)}
Y cada...
Regístrate para leer el documento completo.