Tecnologia
Este es el primer caso y se emplea para factorizar una expresión en la cual todos los términos tienen algo en común (puede ser un número, una letra, o la combinación de los dos).Ejemplo:
Factor común monomio
Factor común por agrupación de términos
y si solo si el polinomio es 0 y el tetranomio nos da x.
Factor común polinomio
Primero hay que determinar el factor común delos coeficientes junto con el de las variables (la que tenga menor exponente). Se toma en cuenta aquí que el factor común no solo cuenta con un término, sino con dos.
un ejemplo:
Diferencia decuadrados
Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b)(a+b), uno negativoy otro positivo.)
Trinomio cuadrado perfecto por adición y sustracción
Se identifica por tener tres sus raíces , el valor que se suma es el mismo que se resta para que el ejercicio original nocambie.
Nótese que los paréntesis en "(xy-xy)" están a modo de aclaración visual.
Caso VI - Trinomio de la forma x2 + bx + c
Se identifica por tener tres términos, hay una literal con exponente alcuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den comoresultado el término independiente y sumados (pudiendo ser números negativos) den como resultado el término del medio.
Ejemplo:
Trinomio de la forma ax2 + bx + c
En este caso se tienen 3 términos:El primer término tiene un coeficiente distinto de uno, la letra del segundo término tiene la mitad del exponente del término anterior y el tercer término es un término independiente, o sea sin unaparte literal, así:
Para factorizar una expresión de esta forma, se multiplica el término independiente por el coeficiente del primer término(4x2) :
Suma o Diferencia de Cubos perfectos
Para...
Regístrate para leer el documento completo.