Temas Variados

Páginas: 7 (1509 palabras) Publicado: 21 de febrero de 2013
Distancia entre dos puntos
Cuando los puntos se encuentran ubicados sobre el eje x o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus abscisas.
Ejemplo: La distancia entre los puntos (-4,0) y (5,0) es 4 + 5 = 9 unidades.
Cuando los puntos se encuentran ubicados sobre el eje y o en una recta paralela a este eje, la distanciaentre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas.
Ahora si los puntos se encuentran en cualquier lugar del sistema de coordenadas, la distancia queda determinada por la relación:

Para demostrar esta relación se deben ubicar los puntos A(x1,y1) y B(x2,y2) en el sistema de coordenadas, luego formar un triángulo rectángulo de hipotenusa AB y emplear el teorema depitágoras.
Ejemplo: Calcula la distancia entre los puntos A(7,5) y B (4,1)

d = 5 unidades

Pendiente de una recta
La pendiente es la inclinación de la recta con respecto al eje de abscisas.
Se denota con la letra m.
Si m > 0 la función es creciente y ángulo que forma la recta con la parte positiva del eje OX es agudo.

Si m < 0 la función es decreciente y ángulo que forma la rectacon la parte positiva del eje OX es obtuso.

La pendiente de una recta es la tangente del ángulo que forma la recta con la dirección positiva del eje de abscisas.
Cálculo de la pendiente

Pendiente dado el ángulo

Pendiente dado el vector director de la recta

Pendiente dados dos puntos

Pendiente dada la ecuación de la recta.

Ejemplos
La pendiente de la recta que pasa por lospuntos A(2, 1), B(4, 7) es:

La recta que pasa por los puntos A(1, 2), B(1, 7) no tiene pendiente, ya que la división por 0 no está definida.

Rectas paralelas

Dos rectas son paralelas si tienen el mismo vector director o la misma pendiente.

Rectas perpendiculares

Si dos rectas son perpendiculares tienen sus pendientes inversas y cambiadas de signo.

Dos rectas son perpendiculares si susvectores directores son perpendiculares.


Hallar una recta paralela y otra perpendicular a r ≡ x + 2 y + 3 = 0, que pasen por el punto A(3,5).

Ecuación de la recta

Para entrar en esta materia y para entender lo que significa la Ecuación de la Recta es imprescindible estudiar, o al menos revisar, lo referido a Geometría analítica y Plano cartesiano.
La idea de línea recta es uno de losconceptos intuitivos de la Geometría (como son también el punto y el plano).
La recta se puede entender como un conjunto infinito de puntos alineados en una única dirección. Vista en un plano, una recta puede ser horizontal, vertical o diagonal (inclinada a la izquierda o a la derecha).
|
La línea de la derecha podemos verla, pero a partir de los datos que nos entrega la misma línea  (par decoordenadas para A y par de coordenadas para B en el plano cartesiano) es que podemos encontrar una expresión algebraica (una función) que determine a esa misma recta.
El nombre que recibe la expresión algebraica (función) que determine a una recta dada se denomina Ecuación de la Recta.
Para comprender este proceder es como si la misma línea solo se cambia de ropa para que la vean o sepan de suexistencia.
Es en este contexto que la Geometría analítica nos enseña que una recta es la representación gráfica de una expresión algebraica (función) o ecuación lineal de primer grado.
Esta ecuación de la recta varía su formulación de acuerdo con los datos que se conozcan de la  línea recta que se quiere representar algebraicamente. Dicho en otras palabras, hay varias formas de representar laecuación de la recta.
1.– Ecuación general de la recta
Esta es una de las formas de representar la ecuación de la recta.
De acuerdo a uno de los postulados de la Geometría Euclidiana, para determinar una línea recta sólo es necesario conocer dos puntos (A y B) de un plano (en un plano cartesiano), con abscisas (x) y ordenadas (y).
Recuerden que es imprescindible dominar todos los aspectos...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Temas variados
  • Temas variados
  • Temas variados
  • Temas variados
  • Temas varios
  • Temas Variados
  • Temas Variados
  • Temas Variados

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS