TEOREMA DE PITÁGORAS

Páginas: 9 (2134 palabras) Publicado: 4 de noviembre de 2015

TEOREMA DE PITÁGORAS

Historia…
Desde el punto de vista matemático, las novedades más importantes que registran los textos babilónicos re refieren a la solución algebraica de ecuaciones lineales y cuadráticas, y el conocimiento del llamado "teorema de Pitágoras" y de sus consecuencias numéricas.
El teorema de Pitágoras tiene este nombre porque su demostración, sobre todo, es esfuerzo de lamística escuela pitagórica. Anteriormente, en Mesopotamia y el Antiguo Egipto se conocían ternas de valores que se correspondían con los lados de un triángulo rectángulo, y se utilizaban para resolver problemas referentes a los citados triángulos, tal como se indica en algunas tablillas y papiros. Sin embargo, no ha perdurado ningún documento que exponga teóricamente su relación [cita requerida]. Lapirámide de Kefrén, datada en el siglo XXVI a. C., fue la primera gran pirámide que se construyó basándose en el llamado triángulo sagrado egipcio, de proporciones 3-4-5.




El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la longitud de la hipotenusa es igual a la suma de los cuadrados de las respectivas longitudes de los catetos . Es la proposición más conocida,entre otras, de las que tienen nombre propio en los contenidos de la matemática






Designaciones convencionales








Demostraciones
El teorema de Pitágoras es de los que cuenta con un mayor número de demostraciones diferentes, utilizando métodos muy diversos. Una de las causas de esto es que en la Edad Media se exigía una nueva demostración del teorema para alcanzar el grado de "Magístermatheseos".

Algunos autores proponen hasta más de mil demostraciones. Otros autores, como el matemático estadounidense E. S. Loomis, catalogó 367 pruebas diferentes en su libro de 1927 The Pythagorean Proposition.
En ese mismo libro, Loomis clasificaría las demostraciones en cuatro grandes grupos: las algebraicas, donde se relacionan los lados y segmentos del triángulo; geométricas, en las que serealizan comparaciones de áreas; dinámicas a través de las propiedades de fuerza, masa; y las cuaterniónicas, mediante el uso de vectores.
El "Zhou Bi" es una obra matemática de datación discutida en algunos lugares, aunque se acepta mayoritariamente que fue escrita entre el 500 y el 300 a. C. Se cree que Pitágoras no conoció esta obra. En cuanto al "Jiu Zhang" parece que es posterior, está fechadoen torno al año 250 a. C.
El "Zhou Bi" demuestra el teorema construyendo un cuadrado de lado (a+b) que se parte en cuatro triángulos de base a y altura b, y un cuadrado de lado c.
Demostración
Sea el triángulo rectángulo de catetos a y b e hipotenusa c. Se trata de demostrar que el área del cuadrado de lado c es igual a la suma de las áreas de los cuadrados de lado a y lado b. Es decir:
a^2 + b^2= c^2\,
Si añadimos tres triángulos iguales al original dentro del cuadrado de lado c formando la figura mostrada en la imagen, obtenemos un cuadrado de menor tamaño. Se puede observar que el cuadrado resultante tiene efectivamente un lado de b - a. Luego, el área de este cuadrado menor puede expresarse de la siguiente manera:
(a-b)^2 = a^2 - 2ab + b^2 \,
Ya que (b-a)^2 = (a-b)^2 \, .
Es evidenteque el área del cuadrado de lado c es la suma del área de los cuatro triángulos de altura a y base b que están dentro de él más el área del cuadrado menor:
c^2 = 4 \cdot \left( \frac{a \cdot b}{2} \right) + a^2 - 2ab + b^2= a^2 + b^2
Con lo cual queda demostrado el teorema.
Demostraciones supuestas de Pitágoras
Se cree que Pitágoras se basó en la semejanza de los triángulos ABC, AHC y BHC. Lafigura coloreada hace evidente el cumplimiento del teorema.
Se estima que se demostró el teorema mediante semejanza de triángulos: sus lados homólogos son proporcionales.
Sea el triángulo ABC, rectángulo en C. El segmento CH es la altura relativa a la hipotenusa, en la que determina los segmentos a’ y b’, proyecciones en ella de los catetos a y b, respectivamente.
Los triángulos rectángulos ABC,...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Teorema de Pitagoras
  • TEOREMA DE PITAGORAS
  • teorema de pitagoras
  • Teorema de pitagoras
  • El teorema de pitagoras
  • teorema de pitagoras
  • Teorema de pitagoras
  • teorema de pitagora

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS