teorema de pitagoras
Hace años, un hombre llamado Pitágoras descubrió un hecho asombroso sobre triángulos:
Si el triángulo tiene un ángulo recto (90°)...
... y pones un cuadradosobre cada uno de sus lados, entonces...
... ¡el cuadrado más grande tiene exactamente la misma área que los otros dos cuadrados juntos!
El lado más largo del triángulo se llama "hipotenusa", asíque la definición formal es:
En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los otros dos lados (llamamos "triángulo rectángulo" a un triángulo con unángulo recto)
Entonces, el cuadrado de a (a²) más el cuadrado de b (b²) es igual al cuadrado de c (c²):
a2 + b2 = c2
Si funciona con un ejemplo. Un triángulo de lados "3,4,5" tiene un ángulorecto, así que la fórmula debería funcionar.
si las áreas son la misma:
32 + 42 = 52
Calculando obtenemos:
9 + 16 = 25
¿Por qué es útil esto?
Si sabemos las longitudes de doslados de un triángulo con un ángulo recto, el Teorema de Pitágoras nos ayuda a encontrar la longitud del tercer lado. (¡Pero recuerda que sólo funciona en triángulos rectángulos!)
¿Cómo lo uso?Escríbelo como una ecuación:
a2 + b2 = c2
Ahora puedes usar álgebra para encontrar el valor que falta, como en estos ejemplos:
a2 + b2 = c2
52 + 122 = c2
25 + 144 = 169
c2 = 169
c = √169c = 13
a2 + b2 = c2
92 + b2 = 152
81 + b2 = 225
Resta 81 a ambos lados
b2 = 144
b = √144
b = 12
¿Qué es el teorema de Pitágoras?
El teorema de Pitágoras dice que en untriángulo rectángulo, el cuadrado de a (a²) más el cuadrado de b (b²) es igual el cuadrado de c (c²):
a2 + b2 = c2
Demostración del teorema de Pitágoras
Podemos ver que a2 + b2 = c2 usando el Álgebraeste diagrama... tiene dentro un triángulo "abc" (en realidad tiene cuatro):
Es un gran cuadrado, cada lado mide a+b, así que el área es:
A = (a+b)(a+b)
Ahora sumamos las áreas de los...
Regístrate para leer el documento completo.