Teorema De Thales
Primer teorema
Como definición previa al enunciado del teorema, es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre si. El primer teorema de Tales recoge uno delos resultados más básicos de la geometría, a saber, que:
:::"Si por un triángulo se traza una línea paralela a cualquiera de sus lados, se obtienen dos triángulos semejantes":::
Según parece, Tales descubrió el teorema mientras investigaba la condición de paralelismo entre dos rectas. De hecho, el primer teorema de Tales puede enunciarse como que la igualdad de los cocientes de los ladosde dos triángulos no es condición suficiente de paralelismo. Sin embargo, la principal aplicación del teorema, y la razón de su fama, se deriva del establecimiento de la condición de semejanza de triángulos, a raíz de la cual se obtiene el siguiente corolario.
Corolario
Del establecimiento de la existencia de una relación de semejanza entre ambos triángulos se deduce la necesariaproporcionalidad entre sus lados. Ello significa que la razón entre la longitud de dos de ellos en un triángulo se mantiene constante en el otro.
Por ejemplo, en la figura se observan dos triángulos que, en virtud del teorema de Tales, son semejantes. Entonces, del mismo se deduce a modo de corolario que el cociente entre los lados A y B del triángulo pequeño es el mismo que el cociente entre los lados D yC en el triángulo grande. Esto es, que como por el teorema de Tales ambos triángulos son semejantes, se cumple que:
Este corolario es la base de la geometría descriptiva. Su utilidad es evidente; según Heródoto, el propio Tales empleó el corolario de su teorema para medir la altura de la pirámide de Keops en Egipto. En cualquier caso, el teorema per se demuestra la semejanza entre dostriángulos, no la constancia del cociente.
Del primer teorema de Tales se deduce además lo siguiente (realmente es otra variante de dicho teorema, y, a su vez, consecuencia del mismo): Si las rectas a, b, c son paralelas y cortan a otras dos rectas r y s, entonces los segmentos que determinan en ellas son proporcionales.
Una aplicación inmediata de este teorema sería la división de un segmento enpartes iguales, o en partes proporcionales a números dados (con ayuda de compás, regla y escuadra o cartabón).
Segundo teorema
El segundo teorema de Tales de Mileto es un teorema de geometría particularmente enfocado a los triángulos rectángulos, las circunferencias y los ángulos inscritos, consiste en el siguiente enunciado:
-----------Sea C un punto de la circunferencia de diámetro ,distinto de A y de B. Entonces el ángulo , es recto.
Tales de Mileto----------------
Este teorema es un caso particular de una propiedad de los puntos cocíclicos y de la aplicación de los ángulos inscritos dentro de una circunferencia.
Demostración: OA = OB = OC = r, siendo O el punto central del círculo y r el radio de la circunferencia. Por lo tanto on isósceles. La suma de los ángulosdel triángulo ABC es equivalente a 2α + 2β = π (radianes). Dividiendo por dos, se obtiene:
Además, la bisectriz de un triángulo corta al lado opuesto del ángulo con la bisectriz en dos segmentos iguales. Hipotenusa² = C² + C², es decir AB²=CA²+CB².
En conclusión se forma un triángulo rectángulo.
Teorema de Tales
Tales de Mileto.
Existen dos teoremas relacionados con la geometríaclásica que reciben el nombre de teorema de Tales, ambos atribuidos al matemático griego Tales de Mileto en el siglo VI a. C.
Índice
[ocultar]
1Los dos teoremas de Tales
2Primer teorema
2.1Corolario
3Segundo teorema
3.1Demostración
3.2Corolarios
4Aplicación (Tales - teorema segundo)
5Leyenda
6Notas y referencias
7Enlaces externos
Los dos teoremas de Tales[editar]
Semicírculo que ilustra el...
Regístrate para leer el documento completo.