teoria cuantica
La mecánica cuántica (también conocida como la física cuántica o la teoría cuántica) es una rama de la física que se ocupa de los fenómenos físicos a escalas microscópicas, donde la acción es del orden de la constante de Planck. Su aplicación ha hecho posible el descubrimiento y desarrollo de muchas tecnologías, como por ejemplo los transistores, componentes ampliamenteutilizados en casi todos los aparatos que tengan alguna parte funcional electrónica.
La mecánica cuántica describe, en su visión más ortodoxa, cómo en cualquier sistema físico y por tanto, en todo el universo existe una diversa multiplicidad de estados, los cuales habiendo sido descritos mediante ecuaciones matemáticas por los físicos, son denominados estados cuánticos. De esta forma la mecánica cuánticapuede explicar la existencia del átomo y revelar los misterios de la estructura atómica, tal como hoy son entendidos; fenómenos que no puede explicar debidamente la física clásica o más propiamente la mecánica clásica.
De forma específica, se considera también mecánica cuántica, a la parte de ella misma que no incorpora la relatividad en su formalismo, tan sólo como añadido mediante la teoría deperturbaciones.3 La parte de la mecánica cuántica que sí incorpora elementos relativistas de manera formal y con diversos problemas, es la mecánica cuántica relativista o ya, de forma más exacta y potente, la teoría cuántica de campos (que incluye a su vez a la electrodinámica cuántica, cromodinámica cuántica y teoría electrodébil dentro del modelo estándar)4 y más generalmente, la teoríacuántica de campos en espacio-tiempo curvo. La única interacción que no se ha podido cuantificar ha sido la interacción gravitatoria.
La mecánica cuántica es el fundamento de los estudios del átomo, su núcleo y las partículas elementales (siendo necesario el enfoque relativista). También en teoría de la información, criptografía y química.
Desarrollo histórico.
La teoría cuántica fue desarrollada ensu forma básica a lo largo de la primera mitad del siglo XX. El hecho de que la energía se intercambie de forma discreta se puso de relieve por hechos experimentales como los siguientes, inexplicables con las herramientas teóricas anteriores de la mecánica clásica o la electrodinámica:
Espectro de la radiación del cuerpo negro, resuelto por Max Planck con la cuantización de la energía. Laenergía total del cuerpo negro resultó que tomaba valores discretos más que continuos. Este fenómeno se llamó cuantización, y los intervalos posibles más pequeños entre los valores discretos son llamados quanta (singular: quantum, de la palabra latina para «cantidad», de ahí el nombre de mecánica cuántica). El tamaño de un cuanto es un valor fijo llamado constante de Planck, y que vale: 6.626×10-34 julios por segundo.
Bajo ciertas condiciones experimentales, los objetos microscópicos como los átomos o los electrones exhiben un comportamiento ondulatorio, como en la interferencia. Bajo otras condiciones, las mismas especies de objetos exhiben un comportamiento corpuscular, de partícula, («partícula» quiere decir un objeto que puede ser localizado en una región concreta del espacio), como enla dispersión de partículas. Este fenómeno se conoce como dualidad onda-partícula.
Las propiedades físicas de objetos con historias asociadas pueden ser correlacionadas, en una amplitud prohibida para cualquier teoría clásica, sólo pueden ser descritos con precisión si se hace referencia a ambos a la vez. Este fenómeno es llamado entrelazamiento cuántico y la desigualdad de Bell describe su diferenciacon la correlación ordinaria. Las medidas de las violaciones de la desigualdad de Bell fueron algunas de las mayores comprobaciones de la mecánica cuántica.
Explicación del efecto fotoeléctrico, dada por Albert Einstein, en que volvió a aparecer esa "misteriosa" necesidad de cuantizar la energía.
Efecto Compton.
El desarrollo formal de la teoría fue obra de los esfuerzos conjuntos de...
Regístrate para leer el documento completo.