TEORIA DE LOS NUMEROS

Páginas: 652 (162963 palabras) Publicado: 13 de agosto de 2015
Carlos Ivorra Castillo

´
TEOR´IA DE NUMEROS

La aritm´etica superior nos proporciona un conjunto inagotable de verdades interesantes — de verdades que adem´
as no est´
an aisladas, sino en estrecha
relaci´
on unas con otras, y entre las cuales, con cada
sucesivo avance de la ciencia, descubrimos nuevos y,
a veces, completamente inesperados puntos de contacto.
C.F.Gauss

´Indice GeneralPrefacio

ix

Cap´ıtulo I: Introducci´
on a la teor´ıa algebraica
1.1 Ternas pitag´
oricas . . . . . . . . . . . . . .
´
1.2 El Ultimo
Teorema de Fermat . . . . . . . .
1.3 Factorizaci´
on u
´nica . . . . . . . . . . . . . .
1.4 La ley de reciprocidad cuadr´
atica . . . . . .
1.5 El teorema de Dirichlet . . . . . . . . . . .
1.6 Ecuaciones diof´
anticas . . . . . . . . . . . .
1.7 Ecuaciones definidaspor formas . . . . . . .
1.8 Conclusi´
on . . . . . . . . . . . . . . . . . .

de
. .
. .
. .
. .
. .
. .
. .
. .


umeros
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

1
1
3
5
8
11
11
14
18

Cap´ıtulo II: Cuerpos num´
ericos
2.1 Enteros algebraicos . . . . . . .
2.2Discriminantes . . . . . . . . .
2.3 M´
odulos y ´ordenes . . . . . . .
2.4 Determinaci´
on de bases enteras
2.5 Normas e ´Indices . . . . . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

19
19
22
25
33
45

Cap´ıtulo III: Factorizaci´
on ideal
3.1 Dominios de Dedekind . . . . . . . . . . . .
3.2Divisibilidad ideal en ´ordenes num´ericos . .
3.3 Ejemplos de factorizaciones ideales . . . . .
3.4 La funci´
on de Euler generalizada . . . . . .
3.5 Factorizaci´
on ideal en ´ordenes no maximales
3.6 El problema de la factorizaci´
on u
´nica real .

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.49
50
58
63
71
71
75

Cap´ıtulo IV: M´
etodos geom´
etricos
4.1 La representaci´
on geom´etrica . . . . . . . . . .
4.2 Ret´ıculos . . . . . . . . . . . . . . . . . . . . .
4.3 El teorema de Minkowski . . . . . . . . . . . .
4.4 El grupo de clases . . . . . . . . . . . . . . . .
4.5 La representaci´
on logar´ıtmica . . . . . . . . . .
4.6 C´
alculo de sistemas fundamentales de unidades
4.7 C´
alculodel n´
umero de clases . . . . . . . . . .

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

77
. 77
. 79
. 83
. 87
. 96
. 100
. 106

v

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

´INDICE GENERAL

vi
Cap´ıtulo V: Fracciones continuas
5.1 Propiedades b´
asicas . . . . . . . . . .
5.2Desarrollos de irracionales cuadr´
aticos
5.3 Transformaciones modulares . . . . . .
5.4 Unidades de cuerpos cuadr´
aticos . . .
5.5 La fracci´
on continua de e . . . . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

111
111
116
118
120
122

Cap´ıtulo VI: Cuerpos cuadr´
aticos
6.1Formas cuadr´
aticas binarias . . . .
6.2 Equivalencia y similitud estricta .
6.3 Grupos de clases . . . . . . . . . .
6.4 Ecuaciones diof´
anticas cuadr´
aticas
6.5 C´
alculo de grupos de clases . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

131132
136
139
145
151

Cap´ıtulo VII: N´
umeros p-´
adicos
7.1 Valores absolutos . . . . . . . . . .
7.2 Cuerpos m´etricos discretos . . . . .
7.3 Criterios de existencia de ra´ıces . .
7.4 Series en cuerpos no arquimedianos

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

157
158
164
170
173...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Teoria de numeros
  • Teoria De Numeros
  • Teoria De Numeros
  • Teoria de los numeros
  • Teoria De Numeros
  • Teoria de numeros
  • Teoría De Los Números
  • Teoria numerica

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS